За гранью: физик рассказал, как обойти законы квантовой механики. За гранью: физик рассказал, как обойти законы квантовой механики Темпоральный кристалл - два варианта

Конец года - самое время подводить итоги и рассуждать о будущих направлениях развития. Мы предлагаем вам окинуть беглым взглядом, что принес 2017 год в физике элементарных частиц, какие результаты были на слуху и какие намечаются тенденции. Эта подборка, безусловно, будет субъективной, но она осветит современное состояние фундаментальной физики микромира с одного широко популярного угла зрения - через поиск Новой физики.

Дела коллайдерные

Главным источником новостей из мира элементарных частиц по-прежнему остается Большой адронный коллайдер . Собственно, он и был создан для того, чтобы расширять наше знание о фундаментальных свойствах микромира и вгрызаться в неизведанное. Сейчас на коллайдере продолжается многолетний сеанс работы Run 2 . Одобренное ЦЕРНом расписание работы коллайдера простирается до середины 2030-х годов, и прямых конкурентов у него не будет как минимум еще десятилетие. Его научная программа включает в себя задачи из самых разных областей физики частиц, так что, даже если задерживаются результаты в каком-то одном направлении, это компенсируется новостями из других.

Здесь остается широчайший простор для громких открытий. Дело в том, что все эти данные LHCb были получены на основе статистики Run 1, набранной в 2010–2012 годах. Тщательный анализ данных и сравнение с моделированием занимает очень много времени, и обработка данных 2016, а тем более - 2017 года еще не завершена. В отличие от ATLAS и CMS, статистика LHCb не демонстрирует такой огромный скачок при переходе от Run 1 к Run 2, но все равно физики ожидают существенное обновление ситуации с загадками B-мезонов. А ведь впереди еще Run 3, а затем - LHC на повышенной светимости , и кто знает, что еще принесет ближайшее десятилетие.

К тому же, в следующем году вступит в строй модернизированная B-фабрика SuperKEKB с детектором Belle II. Уже в ближайшие годы она станет полноправным охотником за отклонениями, а к 2024 году накопит совершенно запредельную светимость 50 ab −1 (то есть 50 000 fb −1), см. рис. 5. В результате, если, скажем, нарушение лептонной универсальности , обнаруженное в распадах B-мезонов на D-мезоны и лептоны, реально, то детектор Belle II сможет его подтвердить на уровне статистической значимости аж 14σ (сейчас оно достигает лишь 4σ).

Редкие распады B-мезонов - это горячая тема и для теоретиков . Громкие заявления о том, что эксперимент существенно расходится с предсказаниями Стандартной моделью, возможны, только если мы эти самые предсказания надежно вычислены. Но их невозможно просто взять и рассчитать. Все упирается во внутреннюю динамику адронов, головную боль теоретиков, которую приходится оценивать на основе предположений. В результате несколько теоретических групп дают существенно различающиеся оценки того, насколько серьезным является расхождение между экспериментом и Стандартной моделью: кто-то заявляет , что больше 5σ, другие - что не превышает 3σ. Это состояние неопределенности, увы, характерно для нынешних интерпретаций аномалий в B-мезонах.

Низкие энергии

Впрочем, кроме поиска намеков на Новую физику при высоких энергиях, в физике частиц есть немало и других задач. Пусть они реже попадают в заголовки СМИ, но для самих физиков они тоже очень важны.

Одно активное направление исследований касается адронной спектроскопии и, в особенности, многокварковых адронов. Ряд открытий был сделан на LHC в прошлые годы (самое заметное - это обнаружение пентакварка со скрытым очарованием), но и 2017 год принес несколько новых частиц. Мы рассказывали про сразу пять новых частиц из семейства Ω c -барионов, открытых единым махом, и про первый дважды очарованный барион . Косвенной демонстрацией того, насколько эта тема захватила физиков, может служить в Nature про энерговыделение в адронных слияниях ; публикация в этом журнале, да еще и теоретической статьи - совершенно экстраординарная ситуация для физики частиц.

Чтобы разобраться с ним, в Фермилабе в этом году запускается новый эксперимент Muon g-2 по измерению злополучного магнитного момента мюона с точностью, в несколько раз превышающей результат 2001 года (см. недавний доклад коллаборации). Первые серьезные результаты следует ожидать уже в 2018 году, окончательные - после 2019 года. Если отклонение останется на прежнем уровне, это станет серьезнейшей заявкой на сенсацию. А тем временем, в ожидании вердикта из Фермилаба, уточняются и теоретические расчеты. Тут загвоздка в том, что адронный вклад в аномальный магнитный момент мюона нельзя вычислить «на кончике пера». Этот расчет тоже неизбежно опирается на эксперименты, но совсем другого рода - например, на рождение адронов в низкоэнергетических электрон-позитронных столкновениях. И тут буквально две недели назад появилось новое измерение от детектора CLEO-c в ускорителе CESR в Корнельском университете. Оно уточняет теоретический расчет и, как выяснилось, усугубляет расхождение: теория и эксперимент 2001 года отличаются теперь на все 4σ. Что ж, тем интереснее будет узнать результаты эксперимента Muon g-2.

Проблемы в физике частиц бывают и чисто инструментальные, скажем, когда разные измерения одной и той же величины сильно расходятся друг с другом. Мы не будем заострять внимание на измерениях гравитационной константы , - эта вопиюще неудовлетворительная ситуация выходит за пределы физики частиц. А вот проблему со временем жизни нейтрона - она во всех подробностях описана в нашей новости 2013 года - упомянуть стоит. Если до середины 2000-х все измерения времени жизни нейтрона давали примерно одинаковые результаты, то новый эксперимент 2005 года, выполненный группой А. П. Сереброва, резко контрастировал с ними . Постановка экспериментов принципиально различалась: в одном измерялась радиоактивность пролетающего пучка нейтронов, а в другом - выживаемость ультрахолодных нейтронов в гравитационной ловушке. Источники систематических погрешностей в этих двух типах экспериментов совершенно разные, и каждая группа критиковала «конкурента», напирая на то, что она-то свои погрешности учла должным образом. И вот, похоже, научный спор близится к своему разрешению. В этом году появилось два новых измерения (первое , второе), проведенные по различающимся методикам. Оба они дают близкие значения и поддерживают результат 2005 года (рис. 7). Окончательную точку сможет поставить новый японский пучковый эксперимент, описанный в недавнем докладе .

По всей видимости, близка к разрешению и другая загадка, мучавшая физиков семь лет - проблема радиуса протона. Эта фундаментальная характеристика ключевого кирпичика материи была, конечно, измерена в многочисленных экспериментах, и все они также давали примерно одинаковые результаты. Однако в 2010 году, изучая спектроскопию не обычного, а мюонного водорода, коллаборация CREMA обнаружила, что, по этим данным, радиус протона на 4% меньше общепринятого значения. Расхождение было очень серьезным - на 7σ. Вдобавок, в прошлом году проблема усугубилась аналогичными измерениями с мюонным дейтерием. В общем, стало совершенно непонятно, в чем вообще подвох: в расчетах, в экспериментах (и тогда - в каких), в обработке данных, или же в самой природе (да-да, некоторые теоретики и здесь пытались увидеть проявления Новой физики). Подробное популярное описание этой проблемы см. в больших материалах Спектроскопия мюонного дейтерия обострила проблему с радиусом протона и Щель в доспехах ; краткий обзор текущей ситуации по состоянию на август этого года приведен в публикации The proton radius puzzle .

И вот в октябре этого года в журнале Science вышла с результатами новых экспериментов, в которых радиус протона был перемерен в обычном водороде. И - сюрприз: новый результат сильно расходился в предыдущими, всеми уважаемыми водородными данными, зато согласовывался с новыми мюонными (рис. 8). Похоже, что причина расхождения скрывалась в тонкостях измерения частот атомных переходов, а не в свойствах самого протона. Если другие группы подтвердят это измерение, то проблему с радиусом протона можно будет считать закрытой.

А вот другая низкоэнергетическая загадка - аномалия в ядерных переходах метастабильного бериллия-8 - так пока и не получила объяснения (рис. 9). Возникшая из ниоткуда два года назад , она привлекла внимание многих теоретиков, ищущих проявления Новой физики, поскольку она напоминала процесс рождения и распада новой легкой частицы с массой 17 МэВ. На эту тему вышло уже несколько десятков статей, но никакого общепринятого объяснения пока не найдено (см. обзор ситуации по состоянию на июль этого года в недавнем докладе). Сейчас проверка этой аномалии включается в виде отдельного пункта научной программы в будущие эксперименты по поиску новых легких частиц, и нам остается только ждать их результатов.

Сигналы из космоса

Элементарные частицы можно искать и изучать не только на коллайдерах, но и в космосе. Самый прямой способ - это ловить частицы космических лучей и по их спектру, составу, и угловому распределению выяснять, откуда эти частицы взялись. Конечно, подавляющее большинство космических пришельцев были разогнаны до больших энергий разными астрофизическими объектами. Но может статься, что некоторые из них возникли в результате аннигиляции или распада частиц темной материи. Если такая связь подтвердится, это станет долгожданным указанием на конкретные частицы темной материи, столь необходимые для космологии, но такие неуловимые в прямых экспериментах .

За последнее десятилетие было обнаружено несколько неожиданных особенностей в спектрах космических частиц разного сорта; две самые любопытные касаются доли космических позитронов и антипротонов большой энергии. Однако в обоих случаях есть и чисто астрофизические варианты объяснения, откуда в космических лучах столько антиматерии.

И вот совсем недавно новую сенсацию подбросили физикам первые результаты спутниковой обсерватории DAMPE : в ее спектре космических электронов «нарисовался» высокий узкий всплеск при энергии 1,4 ТэВ (см. подробное описание в новости , «Элементы», 13.12.2017). Конечно же, многие восприняли его как прямой сигнал от аннигиляции или распада частиц темной материи (рис. 10) - в первые же дни после обнародования результатов DAMPE вышло свыше десятка статей на эту тему (см. материал Изломы и всплески далекого космоса). Сейчас поток ослаб; ясно, что следующий шаг - за новыми наблюдательными данными, и они, к счастью, поступят через год-два.

А вот другой недавний результат относится совсем к иным масштабам, космологическим, и к иным частицам - нейтрино. В появившейся в ноябре статье arXiv:1711.05210 сообщается о том, что, на основе пространственного распределения скоплений галактик, впервые удалось измерить сумму масс всех типов нейтрино: 0,11 ± 0,03 эВ. Нейтрино - это самые загадочные из известных фундаментальных частиц. Они обескураживающе легкие, настолько легкие, что большинство физиков уверено, что за их массу отвечает не хиггсовский механизм, а какая-то Новая физика. Кроме того, они осциллируют, спонтанно превращаются друг в друга на лету - и за доказательство этого факта была присуждена Нобелевская премия по физике за 2015 год . Благодаря осцилляциям мы знаем, что у трех сортов нейтрино массы разные, но мы не знаем их общего масштаба. Будь у нас это одно-единственное число, сумма масс всех нейтрино, мы бы смогли резко ограничить фантазии теоретиков относительно того, откуда вообще у нейтрино берутся массы.

Общий масштаб масс нейтрино можно, в принципе, измерять и в лаборатории (эксперименты ведутся, но пока дают лишь ограничение сверху), а можно извлекать из космических наблюдений. Дело в том, что нейтрино в космосе всегда было очень много, и в ранней Вселенной они влияли на формирование крупномасштабной структуры - зародышей будущих галактик и их скоплений (рис. 11). В зависимости от того, какова их масса, это влияние различается. Поэтому изучив статистическое распределение галактик и их скоплений, можно извлечь и суммарную массу всех типов нейтрино.

Конечно, такие попытки делались и раньше, но все они давали лишь ограничение сверху. Самое консервативное из них - это результат коллаборации Planck 2013 года: сумма масс меньше 0,25 эВ. Отдельные группы исследователей потом объединяли данные Planck с другими и получали более сильные, но и более модельно-зависимые ограничения сверху, вплоть до 0,14 эВ. Но это по-прежнему оставались именно ограничения! А новая статья, проанализировав опубликованный недавно каталог скоплений галактик, впервые смогла увидеть эффект от ненулевой массы и извлечь число 0,11 ± 0,03 эВ. Эта работа продолжается и дальше, так что можно ожидать, что в ближайшие годы ситуация полностью определится. А пока что заметим, что астрофизическое сообщество к этой работе отнеслось довольно настороженно: видимо, столь опосредованное статистическое измерение требует тщательно перепроверки.

И немного о теории

Теоретическая физика частиц в 2017 году, в целом, продолжила тенденцию прошлых лет. Есть отдельные четко очерченные направления работы, - и внутри них теоретики планомерно решают свои достаточно технические задачи. А есть очень широкое коммьюнити физиков-феноменологов, которые разными методами пытаются нащупать Новую физику. В этом пестром коллективе даже и близко нет намека на скоординированное движение в одном направлении. Скорее, в отсутствие четких экспериментальных указаний, здесь наблюдается броуновское движение частиц-теоретиков в многомерном и запутанном пространстве математических возможностей. Какая-никакая польза от этого есть: сообщество проверяет все возможные варианты гипотетического устройства нашего мира, либо отбрасывая их из-за несогласия с экспериментом, либо, наоборот, разрабатывая вглубь. Но сами теоретики признают, что подавляющее большинство конкретных моделей, которые они сейчас предлагают и изучают, будет рано или поздно выброшено за ненадобностью на свалку истории.

Из всего безбрежного моря разработок выделим, пожалуй, только одну тенденцию, которая стала усиливаться в последние год-два. Физики постепенно перестают цепляться за те идеи, которые им казались естественными - будь то эстетические соображения или естественность в вычислительном смысле , см. по этому поводу недавний доклад , в явных выражениях подчеркивающий эту мысль. К чему это в конце концов приведет - предсказать сейчас, из 2017 года, невозможно. Может быть, теоретики обнаружат-таки элегантную теорию, предсказания которой будут подтверждаться. А может быть, сначала придут долгожданные экспериментальные результаты, указывающие на физику за пределами Стандартной модели, и теоретики методом проб и ошибок подберут к ним ключи. Может, конечно, оказаться и так, что ничего существенно нового так и не обнаружится в ближайшие десятилетия - и тогда придется пересматривать весь подход к дальнейшему изучению микромира. Одним словом, мы сейчас на перепутье и в состоянии неопределенности. Но видеть в этом следует не поводы для уныния, а признак того, что нас ждут перемены.

Декабрь - время подводить итоги. Редакция проекта "Вести.Наука" (nauka.сайт) отобрала для вас десять самых интересных новостей, которыми нас в уходящем году порадовали физики.

Новое состояние вещества

Технология заставляет молекулы самостоятельно собираться в нужные структуры.

Состояние вещества под названием экситоний было теоретически предсказано почти полвека назад, но получить его в эксперименте удалось только сейчас.

Такое состояние связано с образованием конденсата Бозе из квазичастиц экситонов, представляющих собой пару из электрона и дырки. Мы , что означают все эти мудрёные слова.

Компьютер на поляритонах


Новый компьютер использует квазичастицы поляритоны.

Эта новость пришла из Сколково. Учёные Сколтеха реализовали принципиально новую схему работы компьютера. Её можно сравнить со следующим методом поиска нижней точки поверхности: не заниматься громоздкими вычислениями, а опрокинуть над ней стакан с водой. Только вместо поверхности было поле нужной конфигурации, а вместо воды - квазичастицы поляритоны. Наш материал в этой квантовой премудрости.

Квантовая телепортация "Земля-спутник"


Квантовое состояние фотона впервые "переслали" с Земли на спутник.

И тут в очередной раз на помощь физикам пришёл Большой адронный коллайдер. "Вести.Наука" , чего удалось добиться исследователям и при чём здесь атомы свинца.

Взаимодействие фотонов при комнатной температуре


Явление впервые наблюдалось при комнатной температуре.

У фотонов много разных способов взаимодействовать друг с другом, и занимается ими наука под названием нелинейная оптика . И если рассеяние света на свете удалось наблюдать лишь недавно, то эффект Керра давно знаком экспериментаторам.

Однако в 2017 году его впервые удалось воспроизвести для отдельных фотонов при комнатной температуре. Мы об этом интересном явлении, которое тоже в каком-то смысле можно назвать "столкновением частиц света", и о технологических перспективах, которые в связи с ним открываются.

Кристалл времени


Творение экспериментаторов демонстрирует "кристаллическую" упорядоченность не в пространстве, а во времени.

В пустом пространстве ни одна точка не отличается от другой. В кристалле всё иначе: есть повторяющаяся структура, которая называется кристаллической решёткой. Возможны ли подобные структуры, которые без затрат энергии повторяются не в пространстве, а во времени?

"Звёздные" термоядерные реакции на Земле


Физики воссоздали в термоядерном реакторе условия в недрах звёзд.

Промышленный термоядерный реактор - заветная мечта человечества. Но эксперименты длятся уже более полувека, а вожделенной практически бесплатной энергии нет как нет.

И всё же в 2017 году был сделан важный шаг в этом направлении. Исследователи впервые практически в точности воссоздали условия, царящие в недрах звёзд. , как им это удалось.

Будем надеяться, что и 2018 год будет столь же богат на интересные эксперименты и неожиданные открытия. Следите за новостями. Кстати, мы делали для вас и обзор уходящего года.

Материал подготовил кандидат физико-математических наук Алексей Понятов

Гравитационные волны от слияния нейтронных звёзд

Столкновение нейтронных звёзд. Иллюстрация: NSF/LIGO/Sonoma State University/A. Simonnet.

Завершённый туннель ускорителя. Фото: European XFEL / Heiner Muller-Elsner.

Компактный нейтринный детектор, который сжимает в руках физик Бьёрн Шольц, по форме и размеру напоминает обычную бутылку. Фото: Juan Collar/uchicago.edu.

Планеты системы TRAPPIST-1 в сравнении с планетами Солнечной системы. Иллюстрация: NASA/JPL-Caltech.

Снимок колец Сатурна, полученный с помощью аппарата «Кассини». Фото: Space Science Institute/JPL-Caltech/NASA.

Самым значимым открытием 2017 года стала первая в истории регистрация гравитационных волн от слияния двух нейтронных звёзд. Астрономам впервые удалось одновременно зафиксировать возникшие при слиянии гамма-вспышки, а затем найти и исследовать место, где произошла космическая катастрофа, - в 100 миллионах световых лет от Земли.

Обнаружили гравитационные волны 17 августа гравитационно-волновые детекторы LIGO (США) и Virgo (Франция, Италия), а спустя пару секунд космические обсерватории «Интеграл» (ЕКА) и «Ферми» (НАСА) зафиксировали короткие гамма-вспышки. К поиску источника сигнала подключились наземные и космические обсерватории, которые затем в течение нескольких десятков дней следили за постепенно гаснущим остатком «взрыва». В работе приняли участие и российские исследователи из ИКИ РАН, ГАИШ МГУ и ФТИ им. А. Ф. Иоффе.

Это открытие имеет отношение сразу к нескольким проблемам астрофизики. В первую очередь - к вопросу о происхождении мощных гамма-лучевых всплесков, которые испускают за доли секунды энергии больше, чем Солнце за миллиарды лет.

Астрофизики давно предполагали, что источником всплесков может быть слияние двух нейтронных звёзд, но теперь они получили экспериментальное доказательство справедливости разработанной теории. В результате столкновения звёзд одновременно с гамма-всплеском часть звёздного вещества с большой скоростью выбрасывается в окружающий космос. Это явление, открытое в 2013 году, получило название килоновой. Затем радиоактивные элементы из образовавшегося облака распадаются на стабильные, порождая его излучение. Астрономы обнаружили в облаке большое количество тяжёлых элементов, таких как золото и платина, что позволяет считать слияния звёзд настоящими галактическими фабриками тяжёлых элементов, отсутствовавших в молодой Вселенной.

Квантовый компьютер в 53 кубита

Квантовые компьютеры, с которыми связаны большие ожидания, пока не созданы, но в 2017 году сделаны важные шаги на пути к воплощению этой идеи в жизнь. Квантовые вычислительные устройства работают с кубитами - объектами, хранящими наименьший элемент информации, аналогами бита в обычном компьютере. Количество кубитов определяет возможности квантового компьютера.

В ноябре в журнале «Nature» опубликованы статьи, посвящённые моделированию квантовых систем с помощью квантовых компьютеров из 51 и 53 кубитов. До этого подобные универсальные устройства были ограничены 20 кубитами. Увеличение количества кубитов в 2,5 раза многократно повысило возможности вычислителей. 51-кубитный квантовый компьютер создан под руководством Михаила Лукина, работающего в Российском квантовом центре и Гарвардском университете. 28 июля года такое устройство было представлено на Международной конференции по квантовым технологиям в Москве.

Стабильный металлический водород

В январе физики из Гарварда сообщили, что они впервые в истории получили небольшое количество стабильного металлического водорода. Образец имел размеры 1,5 х 10 мкм. Теоретически существование металлического водорода при больших давлениях было предсказано в 1935 году. В природе такие условия реализуются в недрах звёзд и планет-гигантов. С 1996 года его несколько раз получали ударным сжатием, но существовал водород в таком состоянии очень короткое время.

Для получения стабильного металлического водорода команда из Гарварда использовала установку, где алмазные наковальни развивали давление 495 гигапаскалей, что примерно в пять миллионов раз больше нормального атмосферного давления.

Помимо чисто научной ценности у этого экзотического материала может найтись и практическое применение - он обладает высокотемпературной сверхпроводимостью (в данном случае она наступала при -58 о С).

Рентгеновский лазер на свободных электронах начал работу

1 сентября состоялась официальная церемония открытия самого крупного в мире Европейского рентгеновского лазера на свободных электронах XFEL (x-ray free electron laser), в создании которого принимала участие и Россия. На самом деле лазером, то есть источником оптического излучения определённого вида, эта установка не является. В ней рентгеновское излучение, аналогичное по свойствам лазерному, создаёт пучок электронов, разогнанный до скоростей, близких к скорости света. В XFEL для этого используется самый большой в мире сверхпроводящий линейный ускоритель длиной 1,7 км. Ускоренные электроны попадают в ондулятор - устройство, создающее в пространстве периодически изменяющееся магнитное поле. Двигаясь в нём по зигзагообразной траектории, электроны излучают в рентгеновском диапазоне. Новая уникальная установка будет генерировать ультракороткие рентгеновские вспышки с рекордной частотой - 27 000 раз в секунду, а её пиковая яркость ожидается в миллиард раз выше существующих источников рентгеновского излучения.

Более 60 научных коллективов уже подали заявки на проведение экспериментов. С помощью рекордно ярких и очень коротких рентгеновских импульсов исследователи смогут увидеть не только расположение атомов в молекулах, но и происходящие там процессы. Это позволит выйти на новый уровень в исследованиях в области физики, химии, материаловедения, наук о жизни, биомедицины. Например, при создании новых лекарств специалисты, зная точное расположение атомов в молекулах белков, смогут подобрать вещества, которые будут блокировать или, наоборот, стимулировать их работу. Знание же структуры кристаллов позволит разрабатывать материалы с заданными свойствами.

Регистрация нейтрино по упругому отскоку

В сентябре 2017 года большой международный коллектив физиков, в том числе и из России, сообщил об открытии упругого когерентного рассеяния нейтрино на ядрах вещества. Это явление предсказал в 1974 году теоретик из Массачусетского технологического института Даниэль Фридман. Нейтрино - неуловимая частица, и для её поимки исследователи строят огромные установки, содержащие десятки тысяч тонн воды. Фридман выяснил, что из-за волновых свойств нейтрино будет согласованно взаимодействовать со всеми протонами и нейтронами ядра, что значительно повысит число рассматриваемых взаимодействий - отскоков нейтрино от ядра. За 461 день исследователи наблюдали 134 таких события.

Это открытие не заставит переписывать учебники. Его значение заключается в создании экспериментаторами детектора небольшого размера, в котором находится всего лишь 14,6 кг кристаллов иодида цезия. Малые переносные нейтринные детекторы найдут разнообразные применения, например для мониторинга ядерных реакторов. К сожалению, они не смогут заменить детекторы-гиганты во всех экспериментах, поскольку детектор, основанный на когерентном рассеянии, не способен различать типы нейтрино.

Темпоральный кристалл - два варианта

В марте две команды исследователей из США сообщили об обнаружении нового состояния материи, получившего название кристалла времени - темпорального кристалла (см. «Наука и жизнь» № 6, 2017 г., ). Это новая идея в физике, широко обсуждаемая в последние годы. Подобные кристаллы представляют собой вечно движущиеся структуры частиц, сами по себе повторяющиеся во времени. Одна группа использовала цепочку атомов иттербия, в которой под действием лазеров колебалась проекция магнитного момента системы. Другая рассматривала кристалл, содержащий порядка миллиона расположенных в беспорядке дефектов, каждый из которых обладал своим магнитным моментом. Когда такой кристалл подвергли воздействию импульсов микроволнового излучения для перевёртывания спинов, физики зафиксировали отклик системы на частоте, которая составила лишь долю частоты возбуждающего излучения. Работы вызвали дискуссию: можно ли считать подобные системы темпоральными кристаллами. Ведь теоретически системы должны колебаться без внешнего воздействия. Но в любом случае такие темпоральные кристаллы найдут применение в роли суперточных сенсоров, например для измерения малейших изменений температуры и магнитных полей.

Экзопланеты, похожие на землю

В последние годы астрономы обнаружили много экзопланет - планет, обращающихся вокруг других звёзд. Однако находки землеподобных планет в зоне, где может существовать жидкая вода, а значит, и жизнь (зона обитаемости), не так уж и часты. В феврале астрономы НАСА объявили об открытии в системе красного карлика TRAPPIST-1 семи экзопланет (три планеты найдены ещё в 2016 году), из которых пять близки по размеру к Земле, а две несколько меньше Земли, но крупнее Марса. Это больше, чем в какой-либо другой системе. По крайней мере три планеты, а возможно и все, находятся в зоне обитаемости.

TRAPPIST-1 - ультрахолодная, с температурой около 2500 К, карликовая звезда массой всего лишь 8% массы Солнца (то есть чуть больше планеты Юпитер), расположенная примерно в 40 световых годах от Земли. Планеты находятся очень близко к звезде, а орбита самой дальней из них намного меньше орбиты Меркурия. В августе астрономы, использующие космический телескоп Хаббл, сообщили о первых намёках на содержание воды в системе TRAPPIST-1, что делает возможным существование там жизни.

В апреле астрономы сообщили об открытии каменистой планеты по размеру в 1,4 раза больше Земли в зоне обитаемости другого красного карлика - LHS 1140. Света она получает в два раза меньше, чем Земля. Авторы открытия считают её хорошим кандидатом для поиска внеземной жизни.

В декабре американские астрономы сообщили об открытии восьмой планеты в системе звезды Кеплер-90, расположенной на расстоянии около 2500 световых лет от Земли. Эта система по числу планет наиболее близка к Солнечной системе. Правда, найденная планета располагается слишком близко к звезде, и температура на её поверхности более 400оС. Интересно, что планета была найдена при обработке данных телескопа Кеплер с помощью нейронной сети.

Завершение миссии «Кассини»

15 сентября падением на поверхность Сатурна завершилась 13-летняя миссия космического зонда «Кассини». Запущенный в 1997 году, он с 2004 года исследовал седьмую планету, передав на Землю огромное число данных и уникальных фотографий. Последний этап его жизни - «Большой финал» начался 26 апреля 2017 года. «Кассини» совершил 22 пролёта между планетой и внутренним кольцом. Такие глубокие «нырки» дали много новой информации, в частности об электрической и химической связи ионосферы Сатурна с кольцами.

На основании данных зонда в 2017 году астрономы пришли к выводу, что кольца Сатурна значительно моложе планеты, которой около 4,5 млрд лет. Возраст колец оценили в 100 млн лет, так что они современники динозавров.

Исследователи решили «уронить» зонд на планету, чтобы он случайно не занёс земные бактерии на спутники Сатурна Титан и Энцелад, где, возможно, имеются местные микроорганизмы.

Кварковый термояд

В ноябре в журнале «Nature» появилась статья, в которой два физика, из США и Израиля, теоретически предположили возможность протекания на кварковом уровне реакции, аналогичной термоядерной, но со значительно большим выделением энергии. Как известно, при термоядерной реакции лёгкие элементы сливаются с выделением энергии. Подобная реакция может происходить и при столкновении элементарных частиц, которые, по современным представлениям, состоят из кварков. В этом случае кварки столкнувшихся частиц будут взаимодействовать и перегруппировываться. В результате появится новая частица с другой энергией связи кварков и выделится энергия.

Исследователи указали две возможные реакции. В первой из них при слиянии двух очарованных кварков будет выделяться энергия 12 МэВ. При слиянии же двух нижних кварков должно выделяться 138 МэВ, что почти в восемь раз больше, чем в отдельном слиянии дейтерия и трития в термоядерной реакции (18 МэВ). Практическое применение этих предположений пока не рассматривается в силу малости жизни кварков.

Экситоны удалось сконденсировать

В декабре команда физиков из США, Великобритании и Нидерландов объявила об открытии новой формы материи, которую они назвали экситоний. Квазичастица экситон - особое возбуждённое состояние кристалла, которое можно представить как соединение электрона и дырки, похожее на атом водорода, - была предсказана в 1931 году советским физиком Яковом Ильичём Френкелем.

Экситон относится к бозонам, частицам с целым спином, а при достаточно низкой температуре система бозонов переходит в особое состояние, называемое конденсатом, в котором все частицы находятся в одном и том же квантовом состоянии и ведут себя как одна большая квантовая волна. Благодаря этому бозе-жидкость становится сверхтекучей или сверхпроводящей. Исследователям удалось обнаружить бозе-конденсат экситонов в кристаллах 1T-TiSe 2 .

Открытие важно для дальнейшего развития квантовой механики, а на практике, возможно, найдёт применение сверхпроводимость и сверхтекучесть экситония.

Почти уже ушедший 2017 год оказался годом громких открытий - космические агентства стали использовать многоразовые ракеты, пациенты теперь могут бороться с раковыми клетками с помощью собственных кровяных клеток, а группа ученых обнаружила в Южном полушарии потерянный континент под названием Зеландия.

Ниже более подробно описаны эти и другие умопомрачительные открытия и невероятные научные достижения 2017 года.

Зеландия

Интернациональная группа, состоящая из 32 ученых, обнаружила в южной части Тихого океана потерянный континент - Зеландию. Она находится под тихоокеанскими водами, на морском дне, между Новой Зеландией и Новой Каледонией. Зеландия не всегда пребывала под водой, поскольку ученые смогли обнаружить окаменевшие останки растений и сухопутных животных.

Новая форма жизни

Ученым удалось создать в лабораторных условиях нечто, наиболее приближенное к новой форме жизни. Дело в том, что ДНК всех живых существ состоит из естественных пар аминокислот: аденин-тимин и гуанин-цитозин. Из этих азотистых оснований и построена большая часть ДНК. Однако ученым удалость создать неестественную пару оснований, которая вполне комфортно сосуществовала с естественными парами в ДНК кишечной палочки.

Это открытие способно повлиять на дальнейшее развитие медицины и может способствовать более долгому удержанию лекарственных препаратов в организме.

Все золото во вселенной

Ученые узнали, как именно образуется все золото во вселенной (а также платина и серебро). В процессе столкновения двух очень маленьких, но очень тяжелых звезд, расположенных на расстоянии 130 миллионов световых лет от Земли, сформировалось золота на сто октиллионов долларов.

Впервые за всю историю наблюдений за звездами астрономам удалось засвидетельствовать столкновение двух нейтронных звезд. Два массивных космических тела направлялись друг к другу со скоростью, равной трети скорости света, и их столкновение привело к созданию гравитационных волн, ощутимых на Земле.

Секреты великой пирамиды

Ученые по-новому взглянули на Великую пирамиду Гизы и обнаружили там секретный зал. Используя новую технологию сканирования на основе высокоскоростных частиц, ученые обнаружили в глубине пирамиды тайную комнату, о которой раньше никто даже не подозревал. Пока ученые могут только предполагать, для чего было построено это помещение.

Новый метод борьбы с раком

Ученые теперь могут использовать иммунную систему человека, чтобы бороться с некоторыми раковыми клетками. Например, чтобы побороть детскую лейкемию, доктора извлекают клетки крови ребенка, модифицируют их и вводят обратно в организм. Пока этот процесс стоит чрезвычайно дорого, но технология развивается и обладает огромным потенциалом.

Новые показатели с полюсов

Не все открытия 2017 года были положительными. Например, в июле от ледяного покрова Антарктики откололся огромный кусок льда, ставший третьим по величине айсбергом, зарегистрированным за всю историю наблюдений.

Кроме того, ученые утверждают, что Арктика, возможно, уже никогда не вернет себе звание вечно ледяного полюса.

Новые планеты

Ученые НАСА обнаружили еще семь экзопланет, которые теоретически могли бы поддерживать жизнь в той форме, которую мы знаем на Земле.

В соседней звездной системе TRAPPIST-1 было замечено целых семь планет, как минимум шесть из них твердотелые, как и Земля. Все эти планеты находятся в благоприятной для формирования воды и жизни зоне. Что самое замечательное в этом открытии, это близость звездной системы и возможность дальнейшего подробного изучения планет.

Прощание с «Кассини»

В 2017 году автоматическая космическая станция «Кассини», которая изучала Сатурн и его многочисленные спутники на протяжении 13 лет, сгорела в атмосфере планеты. Это было запланированным концом миссии, на который ученые пошли осознанно в попытке избежать столкновения «Кассини» с возможно обитаемыми спутниками Сатурна.

Прямо перед своей гибелью «Кассини» облетела Титан и пролетела сквозь ледяные кольца Сатурна, отправив на Землю уникальные снимки.

МРТ для младенцев

У самых крошечных малышей, находящихся на лечении или обследовании в больнице, появилась собственная магнитно-резонансная томография, безопасная для использования в той же комнате, где находятся младенцы.

Многоразовый ракетный ускоритель

Компания SpaceX изобрела новый ракетный ускоритель, который не падает на Землю после запуска ракеты и который можно использовать несколько раз.

Ускорители являются одной из самых дорогостоящих частей запуска ракеты в космос, и обычно все они оказываются на океанском дне сразу после запуска. Очень дорогое одноразовое приспособление, без которого до орбиты не добраться.

Однако новые тяжелые бустеры компании SpaceX могут быть переоборудованы сравнительно легко и дешево и экономить по 18 миллионов долларов с каждого запуска. За 2017 год компания Илона Маска уже провела около 20 запусков с последующей посадкой бустера.

Новые достижения в генетике

Ученые стали на шаг ближе к возможности редактировать ДНК человека, избавляя его еще до рождения от врожденных дефектов, болезней и генетических аномалий. Генетики из Орегона впервые успешно отредактировали ДНК живого человеческого эмбриона.

Кроме того, компания eGenesis объявила о том, что в скором времени людям можно будет пересаживать крупные жизненно важные органы от доноров-свиней. Компании удалось создать генетический блокиратор вирусов, который не передает человеку вирусы животного.

Прорыв в квантовой телепортации

Возможность телепортации квантовой информации уже давно исследуется учеными. Раньше удавалось телепортировать данные на расстояние в несколько десятков километров.

Впервые в истории квантовой телепортации китайскому ученому удалось передать информацию о фотонах (световых частицах) с Земли в космос с помощь зеркал и лазеров.

Это открытие может кардинально изменить то, как мы передаем информацию по всему миру и транспортируем энергию. Квантовая телепортация может привести к абсолютно новому виду квантовых компьютеров и передачи информации. Интернет скорого будущего может стать быстрее, безопаснее и практически неприступным для хакеров.

Заканчивается очередной год, и пришло время в очередной раз присесть, сложить руки, глубоко вздохнуть и посмотреть на некоторые из заголовков научных статей, на которые мы, возможно, ранее не обращали внимания. Ученые постоянно создают какие-то новые разработки в различных областях, таких как нанотехнологии, генная терапия или квантовая физика, и это всегда открывает новые горизонты.

Заголовки научных статей все больше напоминают названия рассказов из научно-фантастических журналов. Учитывая то, что нам принес 2017 год, остается только с нетерпением дожидаться, что принесет новый, 2018-й.

Спонсор поста: http://www.esmedia.ru/plazma.php : Аренда плазменных панелей. Недорого.
Источник: muz4in.net

Ученые создали темпоральные кристаллы, для которых не действуют законы симметрии времени

Согласно первому закону термодинамики, создание вечного двигателя, который будет работать без дополнительного источника энергии, невозможно. Однако в начале этого года физикам удалось создать конструкции, называемые темпоральными кристаллами, которые ставят этот тезис под сомнение.

Темпоральные кристаллы выступают в качестве первых реальных примеров нового состояния материи, называемого «неравновесным», в котором атомы имеют переменную температуру и никогда не находятся в тепловом равновесии друг с другом. Темпоральные кристаллы имеют атомную структуру, которая повторяется не только в пространстве, но и во времени, что позволяет им поддерживать постоянные колебания без получения энергии. Это происходит даже в стационарном состоянии, которое является самым низшим энергетическим состоянием, когда движение теоретически невозможно, поскольку оно требует затрат энергии.

Так что же, кристаллы времени нарушают законы физики? Строго говоря, нет. Закон сохранения энергии работает только в системах с симметрией во времени, которая подразумевает, что законы физики одинаковы везде и всегда. Однако темпоральные кристаллы нарушают законы симметрии времени и пространства. И не только они. Магниты тоже иногда считаются природными асимметричными объектами, потому что у них есть северный и южный полюса.

Еще одна причина, по которой темпоральные кристаллы не нарушают законов термодинамики, заключается в том, что они не полностью изолированы. Иногда их нужно «подталкивать» - то есть давать внешний импульс, после получения которого они уже начнут менять свои состояния снова и снова. Возможно, что в будущем эти кристаллы найдут широкое применение в области передачи и хранения информации в квантовых системах. Они могут сыграть решающую роль в квантовых вычислениях.

«Живые» крылья стрекозы

В энциклопедии Merriam-Webster говорится, что крыло - это подвижный придаток из перьев или мембраны, используемый птицами, насекомыми и летучими мышами для полета. Оно не должно быть живым, но энтомологи из Кильского университета в Германии сделали несколько потрясающих открытий, которые говорят об обратном - по крайней мере относительно некоторых стрекоз.

Насекомые дышат с помощью трахейной системы. Воздух проникает в организм через отверстия, называемые дыхальцами. Затем он проходит через сложную сеть трахей, которые доставляют воздух ко всем клеткам тела. Однако сами крылья состоят почти полностью из мертвой ткани, которая высыхает и становится полупрозрачной либо покрывается цветными узорами. Области мертвой ткани пронизывают прожилки, и это единственные компоненты крыла, являющиеся частью дыхательной системы.

Однако когда энтомолог Рейнер Гильермо Феррейра посмотрел на крыло самца стрекозы Zenithoptera через электронный микроскоп, он увидел крошечные ветвистые трахейные трубки. Это был первый случай, когда нечто подобное было замечено в крыле насекомого. Для определения того, является ли эта физиологическая особенность свойственной только этому виду или, возможно, встречается и у других стрекоз или даже у других насекомых, потребуется много исследований. Возможно даже, что это единичная мутация. Наличие обильных запасов кислорода может объяснить яркие сложные синие узоры, свойственные крыльям стрекозы Zenithoptera, которые не содержат синего пигмента.

Древний клещ с кровью динозавра внутри

Конечно, это заставило людей сразу подумать о сценарии из «Парка юрского периода» и о возможности использования крови, чтобы воссоздать динозавров. К сожалению, в ближайшее время этого не случится, потому что извлечь образцы ДНК из найденных кусочков янтаря невозможно. Дискуссии о том, как долго может продержаться молекула ДНК, все еще не окончены, но даже по самым оптимистичным оценкам и в самых оптимальных условиях срок их жизни не более нескольких миллионов лет.

Но, хотя клещ, названный Deinocrotondraculi («Ужасный Дракула»), и не помог восстановить динозавров, он все равно остается крайне необычной находкой. Теперь мы знаем не только то, что у пернатых динозавров водились древние клещи, но и то, что они заражали даже гнезда динозавров.

Модификация генов взрослого человека

На сегодняшний день вершиной генной терапии являются «короткие палиндромные повторы, регулярно расположенные группами», или CRISPR (от английского clustered regularly interspaced short palindromic repeats). Семейство последовательностей ДНК, которые в настоящее время составляют основу технологии CRISPR-Cas9, теоретически может навсегда изменить ДНК человека.

В 2017 году генная инженерия сделала решительный рывок вперед - после того как команда из Протеомического исследовательского центра в Пекине объявила, что успешно использовала CRISPR-Cas9 для устранения болезнетворных мутаций жизнеспособных человеческих эмбрионов. Другая команда, из лондонского Института Фрэнсиса Крика, прошла противоположный путь и впервые использовала эту технологию для преднамеренного создания мутаций в человеческих эмбрионах. В частности, они «отключили» ген, способствующий развитию эмбрионов в бластоцисты.

Исследования показали, что технология CRISPR-Cas9 работает - и довольно успешно. Однако это вызвало активные этические дебаты о том, насколько далеко можно заходить в использовании этой технологии. Теоретически это может привести к «дизайнерским детям», которые могут обладать интеллектуальными, спортивными и физическими характеристиками в соответствии с характеристиками, заданными родителями.

Отбросив этику в сторону, в ноябре этого года исследования зашли еще дальше, когда CRISPR-Cas9 впервые испытали на взрослом человеке. 44-летний Брэд Мадду из Калифорнии страдает синдромом Хантера, неизлечимой болезнью, которая в конечном итоге может привести его к инвалидному креслу. Ему вводили миллиарды копий корректирующего гена. Пройдет несколько месяцев, прежде чем можно будет определить, оказалась ли процедура успешной.

Что было раньше - губка или гребневики?

Новый научный отчет, который был опубликован в 2017 году, должен раз и навсегда положить конец давней дискуссии о происхождении животных. Согласно исследованию, губки являются «сестрами» всех животных в мире. Это связано с тем, что губки были первой группой, которая отделилась в процессе эволюции от примитивного общего предка всех животных. Это произошло примерно 750 миллионов лет назад.

Ранее велись горячие дебаты, которые сводились к двум основным кандидатам: вышеупомянутым губкам и морским беспозвоночным под названием гребневики. В то время как губки - простейшие существа, которые сидят на дне океана и питаются, пропуская и отфильтровывая воду через свой организм, гребневики более сложные. Они напоминают медузу, способны двигаться в воде, могут создавать световые узоры и имеют простейшую нервную систему. Вопрос о том, кто из них был первым, - это вопрос о том, как выглядел наш общий предок. Это считается важнейшим моментом в отслеживании истории нашей эволюции.

Хотя результаты исследования смело провозглашают, что вопрос урегулирован, всего за несколько месяцев до этого было опубликовано другое исследование, в котором говорилось, что нашими эволюционными «сестрами» являются гребневики. Следовательно, еще слишком рано говорить о том, что последние результаты можно считать достаточно надежными, чтобы подавить любые сомнения.

Еноты прошли древний тест на интеллект

В шестом веке до нашей эры древнегреческий писатель Эзоп написал или же насобирал множество басен, которые в наше время известны как «Басни Эзопа». Среди них была басня под названием «Ворона и кувшин», в которой описывается, как хотевшая пить ворона бросала в кувшин камешки, чтобы поднять уровень воды и наконец напиться.

Несколько тысяч лет спустя ученые поняли, что эта басня описывает хороший способ тестирования интеллекта животных. Эксперименты показали, что подопытные животные понимали причину и следствие. Вороны, как и их сородичи, грачи и сойки, подтвердили истинность басни. Обезьяны также прошли этот тест, кроме того, в этом году к списку добавились и еноты.

Во время теста по басне Эзопа восемь енотов получили емкости с водой, на поверхности которой плавал зефир. Уровень воды был слишком низким, чтобы его достать. Двое из испытуемых успешно набросали в емкость камней, чтобы поднять уровень воды и получить желаемое.

Другие подопытные нашли свои собственные креативные решения, которых исследователи никак не ожидали. Один из енотов, вместо того, чтобы бросать в емкость камни, взобрался на емкость и начал раскачиваться на ней из стороны в сторону, пока не опрокинул. В другом тесте, с использованием вместо камней плавающих и тонущих шариков, эксперты надеялись, что еноты будут использовать тонущие шарики и отбрасывать плавающие. Вместо этого некоторые животные стали многократно окунать в воду плавающий шарик, пока поднявшаяся волна не прибила кусочки зефира к борту, что облегчило их извлечение.

Физики создали первый топологический лазер

Физики из Калифорнийского университета в Сан-Диего утверждают, что создали новый тип лазера - «топологический», луч которого может принимать любую сложную форму без рассеивания света. Устройство работает на основе концепции топологических изоляторов (материалов, которые внутри своего объема являются диэлектриками, но проводят ток по поверхности), которая получила Нобелевскую премию по физике в 2016 году.

Обычно в лазерах для усиления света используются кольцевые резонаторы. Они более эффективны, чем резонаторы с острыми углами. Однако на этот раз исследовательская группа создала топологическую полость с использованием фотонного кристалла в качестве зеркала. В частности, были использованы два фотонных кристалла с различными топологиями, один из которых являлся звездообразной ячейкой в квадратной решетке, а другой - треугольной решеткой с цилиндрическими воздушными отверстиями. Член команды Бубакар Канте сравнил их с бубликом и кренделем: хотя они оба - хлеб с отверстиями, различное количество отверстий делает их различными.

Как только кристаллы попадают в нужное место, луч принимает желаемую форму. Управляется эта система с помощью магнитного поля. Оно позволяет менять направление, в котором излучается свет, тем самым создавая световой поток. Непосредственное практическое применение этого способно увеличить скорость оптической связи. Однако в перспективе это рассматривается как шаг вперед в создании оптических компьютеров.

Ученые открыли экситониум

Физики всего мира с большим энтузиазмом отнеслись к открытию новой формы материи, названной экситониум. Эта форма представляет собой конденсат из квазичастиц, экситонов, которые являются связанным состоянием свободного электрона и электронной дырки, которая образовывается в результате того, что молекула потеряла электрон. Более того, физик-теоретик из Гарварда Берт Гальперин предсказал существование экситониума еще в 1960-х годах, и с тех пор ученые пытались доказать его правоту (или ошибку).

Подобно многим крупным научным открытиям, и в этом открытии была изрядная доля случайности. Команда исследователей из Университета штата Иллинойс, которая обнаружила экситониум, на самом деле осваивала новую технологию, называемую спектроскопией потерь энергии в электронном потоке (M-EELS), - созданную специально для идентификации экситонов. Однако открытие состоялось, когда исследователи проводили всего лишь калибровочные тесты. Один член команды вошел в комнату, пока все остальные смотрели на экраны. Они сказали, что зафиксировали «легкий плазмон», предшественник экситонной конденсации.

Руководитель исследования профессор Питер Аббамонт сравнил это открытие с бозоном Хиггса - оно не будет иметь непосредственного использования в реальной жизни, но показывает, что наше нынешнее понимание квантовой механики находится на правильном пути.

Ученые создали нанороботов, которые убивают рак

Исследователи из Университета Дарема утверждают, что создали нанороботов, которые способны выявить раковые клетки и убить их всего за 60 секунд. В ходе увенчавшегося успехом испытания, проведенного в университете, крошечным роботам потребовалось от одной до трех минут, чтобы проникнуть через наружную мембрану в раковую клетку простаты и немедленно уничтожить ее.

Нанороботы в 50 000 раз меньше диаметра человеческого волоса. Они активируются светом и вращаются со скоростью от двух до трех миллионов оборотов в секунду, чтобы получить возможность проникнуть через оболочку клетки. Когда они достигают своей цели, то могут либо уничтожить ее, либо внедрить в нее полезный терапевтический агент.

До сих пор нанороботы испытывались только на отдельных клетках, но обнадеживающие результаты побудили ученых перейти к опытам на микроорганизмах и мелких рыбешках. Дальнейшая цель - перейти к грызунам, а затем и к людям.

Межзвездный астероид может быть инопланетным космическим аппаратом

Прошла всего пара месяцев с тех пор, как астрономы радостно объявили об открытии первого межзвездного объекта, пролетающего через Солнечную систему, астероида под названием Оумуамуа. С тех пор они наблюдали много странных вещей, происходивших с этим небесным телом. Иногда оно вело себя так необычно, что ученые считают - объект может оказаться космическим кораблем инопланетян.

Прежде всего настораживает его форма. Оумуамуа имеет форму сигары с отношением длины к диаметру как десять к одному, чего ни разу не видели ни в одном из наблюдаемых астероидов. Сначала ученые подумали, что это комета, но затем поняли, что это не так, потому что объект не оставлял за собой хвоста по мере приближения к Солнцу. Более того, некоторые эксперты утверждают, что скорость вращения объекта должна была развалить любой нормальный астероид. Складывается впечатление, что он был специально создан для межзвездных путешествий.

Но если он создан искусственно, то что это может быть? Одни говорят, что это инопланетный зонд, другие считают, что это может быть космический корабль, двигатели которого пришли в неисправность, и теперь он плывет через космос. В любом случае участники таких программ, как SETI и BreakthroughListen, считают, что Оумуамуа требует дальнейшего исследования, поэтому нацеливают на него свои телескопы и прослушивают любые радиосигналы.

Пока гипотеза об инопланетянах никак не подтвердилась, первоначальные наблюдения SETI ни к чему не привели. Многие исследователи по-прежнему пессимистично оценивают шансы, что объект может быть создан инопланетянами, но в любом случае исследования будут продолжены.