Формула нахождения суммы углов выпуклого многоугольника. Теорема о сумме углов многоугольника

Внутренний угол многоугольника - это угол, образованный двумя смежными сторонами многоугольника. Например, ∠ABC является внутренним углом.

Внешний угол многоугольника - это угол, образованный одной стороной многоугольника и продолжением другой стороны. Например, ∠LBC является внешним углом.

Количество углов многоугольника всегда равно количеству его сторон. Это относится и к внутренним углам и к внешним. Несмотря на то, что для каждой вершины многоугольника можно построить два равных внешних угла, из них всегда принимается во внимание только один. Следовательно, чтобы найти количество углов любого многоугольника, надо посчитать количество его сторон.

Сумма внутренних углов

Сумма внутренних углов выпуклого многоугольника равна произведению 180° и количеству сторон без двух.

s = 2d (n - 2)

где s - это сумма углов, 2d - два прямых угла (то есть 2 · 90 = 180°), а n - количество сторон.

Если мы проведём из вершины A многоугольника ABCDEF все возможные диагонали, то разделим его на треугольники, количество которых будет на два меньше, чем сторон многоугольника:

Следовательно, сумма углов многоугольника будет равна сумме углов всех получившихся треугольников. Так как сумма углов каждого треугольника равна 180° (2d ), то сумма углов всех треугольников будет равна произведению 2d на их количество:

s = 2d (n - 2) = 180 · 4 = 720°

Из этой формулы следует, что сумма внутренних углов является постоянной величиной и зависит от количества сторон многоугольника.

Сумма внешних углов

Сумма внешних углов выпуклого многоугольника равна 360° (или 4d ).

s = 4d

где s - это сумма внешних углов, 4d - четыре прямых угла (то есть 4 · 90 = 360°).

Сумма внешнего и внутреннего угла при каждой вершине многоугольника равна 180° (2d ), так как они являются смежными углами . Например, ∠1 и ∠2 :

Следовательно, если многоугольник имеет n сторон (и n вершин), то сумма внешних и внутренних углов при всех n вершинах будет равна 2dn . Чтобы из этой суммы 2dn получить только сумму внешних углов, надо из неё вычесть сумму внутренних углов, то есть 2d (n - 2):

s = 2dn - 2d (n - 2) = 2dn - 2dn + 4d = 4d

Примечание . Данный материал содержит теорему и ее доказательство, а также ряд задач, иллюстрирующих применение теоремы о сумме углов выпуклого многоугольника на практических примерах .

Теорема о сумме углов выпуклого многоугольника

.

Доказательство .

Для доказательства теоремы о сумме углов выпуклого многоугольника воспользуемся уже доказанной теоремой о том, что сумма углов треугольника равна 180 градусам.

Пусть A 1 A 2... A n - данный выпуклый многоугольник, и n > 3. Проведем все диагонали многоугольника из вершины A 1. Они разбивают его на n – 2 треугольника: Δ A 1 A 2 A 3, Δ A 1 A 3 A 4, ... , Δ A 1 A n – 1 A n . Сумма углов многоугольника совпадает с суммой углов всех этих треугольников. Сумма углов каждого треугольника равна 180°, а число треугольников – (n – 2). Поэтому сумма углов выпуклого n -угольника A 1 A 2... A n равна 180° (n – 2).

Задача.

В выпуклом многоугольнике три угла по 80 градусов, а остальные - 150 градусов. Сколько углов в выпуклом многоугольнике?

Решение.

Теорема гласит: Для выпуклого n-угольника сумма углов равна 180°(n-2) .

Значит, для нашего случая:

180(n-2)=3*80+x*150, где

3 угла по 80 градусов нам даны по условию задачи, а количество остальных углов нам пока неизвестно, значит обозначим их количество как x.

Однако, из записи в левой части мы определили количество углов многоугольника как n, поскольку из них величины трех углов мы знаем по условию задачи, то очевидно, что x=n-3.

Таким образом уравнение будет выглядеть так:

180(n-2)=240+150(n-3)

Решаем полученное уравнение

180n - 360 = 240 + 150n - 450

180n - 150n = 240 + 360 - 450

Ответ: 5 вершин

Задача.

Какое количество вершин может иметь многоугольник, если величина каждого из углов менее 120 градусов?

Решение.

Для решения данной задачи воспользуемся теоремой о сумме углов выпуклого многоугольника.

Теорема гласит: Для выпуклого n-угольника сумма всех углов равна 180°(n-2) .

Значит, для нашего случая необходимо сначала оценить граничные условия задачи. То есть, сделать допущение, что каждый из углов равен 120 градусам. Получаем:

180n - 360 = 120n

180n - 120n = 360 (это выражение рассмотрим отдельно ниже)

Исходя из полученного уравнения, делаем вывод: при величине углов менее 120 градусов, количество углов многоугольника менее шести.

Объяснение:

Исходя из выражения 180n - 120n = 360 , при условии, что вычитаемое правой части будет менее 120n, разность должна быть более 60n. Таким образом, частное от деления всегда будет менее шести.

Ответ: количество вершин многоугольника будет менее шести.

Задача

В многоугольнике три угла по 113 градусов, а остальные равны между собой и их градусная мера - целое число. Найти количество вершин многоугольника.

Решение.

Для решения данной задачи воспользуемся теоремой о сумме внешних углов выпуклого многоугольника.

Теорема гласит: Для выпуклого n-угольника сумма всех внешних углов равна 360° .

Таким образом,

3*(180-113)+(n-3)x=360

правая часть выражения - сумма внешних углов, в левой части сумма трех углов известна по условию, а градусная мера остальных (их количество, соответственно n-3, так как три угла известны) обозначена как x.

159 раскладывается только на два множителя 53 и 3, при чем 53 - простое число. То есть других пар множителей не существует.

Таким образом, n-3 = 3, n=6, то есть количество углов многоугольника - шесть.

Ответ : шесть углов

Задача

Докажите, что у выпуклого многоугольника может быть не более трех острых углов.

Решение

Как известно, сумма внешних углов выпуклого многоугольника равна 360 0 . Проведем доказательство от противного. Если у выпуклого многоугольника не менее четырех острых внутренних углов, следовательно среди его внешних углов не менее четырех тупых, откуда следует, что сумма всех внешних углов многоугольника больше 4*90 0 = 360 0 . Имеем противоречие. Утверждение доказано.

Вашего многоугольника. Например, если вам нужно найти углы правильного многоугольника с 15 сторонами, подставьте n=15 в уравнение. У вас получится S=180⁰(15-2), S=180⁰х13, S=2340⁰.

Далее разделите полученную сумму внутренних углов на их количество. Например, в с многоугольником количество углов количеству сторон, то есть 15. Таким образом, вы получите, что угол равен 2340⁰/15=156⁰. Каждый внутренний угол многоугольника равен 156⁰.

Если вам удобнее рассчитать углы многоугольника в радианах, действуйте следующим образом. Вычтите из количества сторон число 2 и умножьте полученную разность на число П (Пи). Затем разделите произведение на количество углов в многоугольнике. Например, если вам нужно рассчитать углы правильного 15-угольника, действуйте так: П*(15-2)/15=13/15П, или 0,87П, или 2,72 (но, как , число П остается в неизменном виде). Либо просто разделите размер угла в градусах на 57,3 - именно столько содержится в одном радиане.

Также можете попробовать рассчитать углы правильного многоугольника в градах. Для этого вычтите из количества сторон число 2, разделите полученное число на количество сторон и умножьте результат на 200. Эта единица измерения углов сегодня почти не используется, но если вы решили посчитать углы в градах, не забудьте, что град разбивается на метрические секунды и минуты (по 100 секунд в минуте).

Возможно, вам необходимо рассчитать внешний угол правильного многоугольника, в этом случае поступайте так. Вычтите из 180⁰ внутренний угол – в результате вы получите значение смежного, то есть внешнего угла. Он может принимать значение от -180⁰ до +180⁰.

Полезный совет

Если вам удалось узнать углы правильного многоугольника – вы сможете легко его построить. Начертите одну сторону определенной длины и от нее при помощи транспортира отложите нужный угол. Отмерьте точно такое же расстояние (все стороны правильного многоугольник равны) и снова отложите нужный угол. Продолжайте, пока стороны не сомкнутся.

Источники:

  • угол в правильном многоугольнике

Описанным называется такой многоугольник, все стороны которого касаются вписанной в него окружности. Описать можно только правильный многоугольник, то есть такой, у которого равны все стороны. С решением подобной задачи сталкивались еще древние архитекторы, когда нужно было спроектировать, например, колонну. Современные технологии позволяют это сделать с минимальными временными затратами, однако принцип работы остается тем же, что и в классической геометрии.

Вам понадобится

  • - циркуль;
  • - транспортир;
  • - линейка;
  • - лист бумаги.

Инструкция

Начертите окружность с заданным . Центр ее определите как О и проведите один из радиусов, чтобы была возможность начать построение. Для того чтобы описать вокруг нее многоугольник, вам нужно единственный его параметр - количество сторон. Обозначьте его как n.

Вспомните, угол любой окружности. Он составляет 360°. Исходя из этого, можно вычислить углы секторов, стороны которых будут соединять центр окружности с точками касания ее со сторонами многоугольника. Количество этих секторов равняется числу сторон многоугольника, то есть n. Угол α найдите по формуле α = 360°/n.

С помощью транспортира отложите полученную величину угла от радиуса и проведите через нее еще один радиус. Чтобы вычисления были точными, пользуйтесь калькулятором и округляйте величины только в исключительных случаях. От этого нового радиуса снова отложите угол сектора и проведите еще одну прямую между центром и линией окружности. Таким же образом постройте все углы.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

В основном курсе геометрии доказывается, что сумма углов выпуклого n-угольника равна 180° (n-2). Оказывается, что это утверждение справедливо и для невыпуклых многоугольников.

Теорема 3. Сумма углов произвольного n-угольника равна 180° (n - 2).

Доказательство. Разобьем многоугольник на треугольники, проведением диагоналей (рис. 11). Число таких треугольников равно n-2, и в каждом треугольнике сумма углов равна 180°. Поскольку углы треугольников составляют углы многоугольника, то сумма углов многоугольника равна 180° (n - 2).

Рассмотрим теперь произвольные замкнутые ломаные, возможно с самопересечениями A1A2…AnA1 (рис. 12, а). Такие самопересекающиеся ломаные будем называть звездчатыми многоугольниками (рис. 12, б-г).

Зафиксируем направление подсчета углов против часовой стрелки. Заметим, что углы, образованные замкнутой ломаной, зависят от направления ее обхода. Если направление обхода ломаной меняется на противоположное, то углами многоугольника будут углы, дополняющие углы исходного многоугольника до 360°.

Если M - многоугольник, образован простой замкнутой ломаной, проходимой в направлении по часовой стрелке (рис. 13, а), то сумма углов этого многоугольника будет равна 180° (n - 2). Если же ломаная проходится в направлении против часовой стрелки (рис. 13, б), то сумма углов будет равна 180° (n + 2).

Таким образом, общая формула суммы углов многоугольника, образованного простой замкнутой ломаной, имеет вид = 180° (n 2), где - сумма углов, n - число углов многоугольника, «+» или «-» берется в зависимости от направления обхода ломаной.

Наша задача состоит в том, чтобы вывести формулу суммы углов произвольного многоугольника, образованного замкнутой (возможно самопересекающейся) ломаной. Для этого введем понятие степени многоугольника.

Степенью многоугольника называется число оборотов, совершаемой точкой при полном последовательном обходе его сторон. Причем обороты, совершаемые в направлении против часовой стрелки, считаются со знаком «+», а обороты по часовой стрелке - со знаком «-».

Ясно, что у многоугольника, образованного простой замкнутой ломаной, степень равна +1 или -1 в зависимости от направления обхода. Степень ломаной на рисунке 12, а равна двум. Степень звездчатых семиугольников (рис. 12, в, г) равна соответственно двум и трем.

Аналогичным образом понятие степени определяется и для замкнутых кривых на плоскости. Например, степень кривой, изображенной на рисунке 14 равна двум.


Для нахождения степени многоугольника или кривой можно поступать следующим образом. Предположим, что, двигаясь по кривой (рис. 15, а), мы, начиная с какого-то места A1, совершили полный оборот, и попали в ту же точку A1. Удалим из кривой соответствующий участок и продолжим движение по оставшейся кривой (рис. 15,б). Если, начиная с какого-то места A2, мы снова совершили полный оборот и попали в ту же точку, то удаляем соответствующий участок кривой и продолжаем движение (рис. 15, в). Считая количество удаленных участков со знаками «+» или «-», в зависимости от их направления обхода, получим искомую степень кривой.

Теорема 4. Для произвольного многоугольника имеет место формула

180° (n +2m),

где - сумма углов, n - число углов, m - степень многоугольника.

Доказательство. Пусть многоугольник M имеет степень m и условно изображен на рисунке 16. M1, …, Mk - простые замкнутые ломаные, проходя по которым, точка совершает полные обороты. A1, …, Ak - соответствующие точки самопересечения ломаной, не являющиеся ее вершинами. Обозначим число вершин многоугольника M, входящих в многоугольники M1, …, Mk через n1, …, nk соответственно. Поскольку, помимо вершин многоугольника M, к этим многоугольникам добавляются еще вершины A1, …, Ak, то число вершин многоугольников M1, …, Mk будет равно соответственно n1+1, …, nk+1. Тогда суммы их углов будут равны 180° (n1+12), …, 180° (nk+12). Плюс или минус берется в зависимости от направления обхода ломаных. Сумма углов многоугольника M0, оставшегося от многоугольника M после удаления многоугольников M1, …, Mk, равна 180° (n-n1- …-nk+k2). Суммы углов многоугольников M0, M1, …, Mk дают сумму углов многоугольника M и в каждой вершине A1, …, Ak дополнительно получим 360°. Следовательно, имеем равенство

180° (n1+12)+…+180° (nk+12)+180° (n-n1- …-nk+k2)=+360°k.

180° (n2…2) = 180° (n+2m),

где m - степень многоугольника M.


В качестве примера рассмотрим вычисление суммы углов пятиконечной звездочки (рис. 17, а). Степень соответствующей замкнутой ломаной равна -2. Поэтому искомая сумма углов равна 180.