Защита наушников от постоянного напряжения. Устройство задержки включения и защиты громкоговорителей


Универсальный блок защиты АС выполнен на малогабаритных деталях и может быть встроен в любой усилитель, не имеющий подобной защиты. Особенность этого блока - в применении встроенного питания от сети, надёжных электромагнитных реле и светодиодной индикации появления постоянного напряжения на выходе усилителя. Устройство обеспечивает стабильную задержку и защиту даже после кратковременного пропадания сетевого напряжения.

Известно, что при подаче питания на усилитель в акустической системе (АС) может возникнуть громкий щелчок (хлопок). Чтобы устранить это явление, необходимо подключать нагрузку к выходу УМЗЧ с некоторой задержкой, достаточной для завершения всех переходных процессов (обычно 1...3 с) . При отключении же питания АС должна отключиться до момента, когда накопительные конденсаторы фильтра питания усилителя заметно разрядятся (более чем на 20 %). В противном случае процесс выключения тоже может создать неприятные призвуки или щелчки.

Представленный модуль реализует функции бесшумного включения и выключения усилителя (фактически АС), а также позволяет защитить НЧ-головки АС при появлении постоянного напряжения на выходе УМЗЧ, связанного с его аварийной работой или выходом из строя.

Технические характеристики

Напряжение питания, В...........190...264

Напряжение срабатывания защиты, В................0,6...0,7

Время задержки включения/перезапуска, с...........2,5...3

Время срабатывания защиты (U вх = 2 В), с, не более 1,4

Время срабатывания защиты (U вх = 20 В), с, не более 0,25

Время выключения модуля, с, не более..................0,25

Потребляемая мощность, Вт, не более..................2,5

Максимальный коммутируемый ток, А....................12

С реализацией задержки и защиты АС вопросов не возникает. Но как реализовать быстрое отключение АС при пропадании (относительно кратковременном) сетевого напряжения, но дос-таточном для возникновения переходного процесса и щелчка? Есть два разумных варианта: использование информации о наличии переменного напряжения в одной из существующих вторичных обмоток трансформатора, питающего УМЗЧ (как это реализовано в микросхеме μРС1237 ), или использование отдельного трансформатора питания (либо от дополнительной обмотки трансформатора УМЗЧ) для узла защиты. Первый вариант накладывает определённые ограничения, сужая универсальность модуля. Второй же позволяет использовать в питании устройства сглаживающий конденсатор небольшой ёмкости, благодаря чему блок защиты гарантированно отключит АС быстрее, чем разрядятся конденсаторы в блоке питания УМЗЧ.

Очевидно, что второй вариант - более надёжный и простой в реализации,позволяющий подключить модуль практически к любому усилителю. Недостаток такого решения - более высокая стоимость за счёт применения дополнительного блока питания, но универсальность и надёжность здесь превалируют.

Схема устройства показана на рис. 1. Его входы нужно подключать к выходам каналов стереофонического УМЗЧ, а выходы - к нагрузкам (АС) соответствующих каналов. Общий провод модуля, громкоговорителей АС (или кроссовера) подключают к общему проводу усилителя непосредственно.

Рис. 1. Схема устройства

При подаче напряжения питания конденсатор C6 медленно заряжается через резистор R10 до 1,9 В (определяется соотношением сопротивления резисторов R10 и R11), что достаточно для открывания транзистора VT4. Срабатывают реле K1, K2, и нагрузка подключается к усилителю.

При возникновении на любом из входов устройства (контакты Х2а, ХЗа) постоянного напряжения более ±0,6...0,7 В открывается соответствующий транзистор (VT1 - для напряжения плюсовой полярности, VT2 - минусовой полярности), включая излучающий диод оптопары U1 или U2. Освещённый фототранзистор оптопары через резистор R8 разряжает конденсатор С6, и полевой транзистор VT4 закрывается, обесточивая реле. Свечение светодиода HL1 индицирует отключение АС и неисправность УМЗЧ. Резистор R8 ограничивает ток разрядки конденсатора С6, а резисторный делитель R4R5 обеспечивает искусственную среднюю точку питающего напряжения.

Большинство подобных устройств защиты и задержки включения АС имеют неприятный недостаток - отсутствие задержки при рестарте за короткий промежуток времени после отключения питания. Пример такой ситуации - кратковременное пропадание электричества в сети. Этот недостаток не позволяет получить должного уровня защиты АС и всей аппаратуры в целом, где применён такой узел. Для исключения этого недостатка введены элементы R9, С5, VT3. Эта цепь кратковременно срабатывает при пропадании и появлении напряжения питания, разряжая конденсатор С6, что и обеспечивает нормальный последующий старт узла защиты. Применение полевого транзистора VT4 с пониженным напряжением открывания (примерно 1,5 В) обеспечивает меньшее напряжение заряда С6, причём время рестарта практически равно времени первого включения. При сохранении постоянных времени зарядки-разрядки конденсатора С6 его ёмкость можно существенно уменьшить, соответственно увеличив сопротивление резисторов R8-R11. Ёмкость конденсатора С1 увеличивать не рекомендуется - она определяет скорость выключения блока защиты.

При номинальном сетевом напряжении 230 В и комнатной температуре 25 о С стабилизатор DA1 нагревается до 50...52 о С. При проверке на максимальном переменном напряжении 274 В (ограничено возможностями ЛАТРа) нагрев стабилизатора составил 64...65 о С - всё в пределах нормы. Если исключить резистор R1, то нижняя допустимая граница питания блока упадёт до 170 В, но при этом увеличится нагрев DA1 в среднем на 10...12 о С. Понятно, что это изменение целесообразно лишь для местности, где напряжение в сети всегда ниже номинального.

Если представить себе ситуацию, когда оба канала УМЗЧ выходят из строя, и в первом канале на выходе образуется напряжение одной полярности, а на втором - обратной полярности, равное по модулю напряжению на выходе первого канала (с разницей менее 0,6...0,7 В), то после суммирования через резисторы R2 и R3 получится напряжение, которого недостаточно для открывания транзистора VT1 или VT2. То есть система защиты не сработает, и это является недостатком (его можно преодолеть изменением сопротивления одного из этих резисторов на ±10 %). Но вероятность такого события пренебрежимо мала и является скорее примером гипотетического моделирования отказа.

Печатная плата (рис. 2), имеющая размеры 66x45 мм, выполнена на фольгированном стеклотекстолите и рассчитана на установку транзисторов в корпусах SOT-23, резисторов типоразмера 0805 (кроме резисторов R1 и R13 - 1206), конденсаторов C2, C5 типоразмера 0805 и диода VD2 в корпусе SMA. На фото рис. 3 показана смонтированная плата со стороны пайки деталей поверхностного монтажа.

Рис. 2. Печатная плата

Рис. 3. Смонтированная плата со стороны пайки деталей поверхностного монтажа

В качестве T1 применён маломощный трансформатор ТПК-2 с вторичной обмоткой на 12 В. Диодный мост может быть любой из серий DB103S-DB107S или MB2S-MB6S, для чего на печатной плате предусмотрены два посадочных места. Диод VD2 - любой с прямым током 1 А и обратным допустимым напряжением не менее 200 В.

Обмотки реле должны быть на ток потребления не более 30 мА (повышенной чувствительности) при напряжении 12 В. Можно было бы использовать одно реле с двумя парами контактов, но автору не удалось найти такого на коммутируемый ток более 8...10 А. Достоинство указанных на схеме реле TRU-12VDC-SB-CL в том, что они имеют на контактах напыление AgCdO (серебро-окись кадмия), устойчивое к механическому износу, и максимальный коммутируемый ток 12 А. Заменить их можно более доступными реле SRD (T73) 12VDС-L-S-С фирмы SONGLE, допускающими ток коммутации до 10 А.

Оптопары U1, U2 можно применить практически любые с соответствующей структурой, например, PS2501, PC817. Светодиод HL1 - любой, желательно красного цвета свечения, например, из серии АЛ307 или иные.

Транзисторы VT1-VT3 могут быть заменены любыми другими маломощными транзисторами соответствующей структуры и типоразмера. Возможно использование MMBT5551, MMBT4401 (VT1, VT3) и MMBT5401, MMBT4403 (VT2).

В качестве замены n-канального полевого транзистора (ПТ) VT4 с низким пороговым напряжением затвора (Gate Threshold Voltage) можно порекомендовать NTR4003N, IRLML2502. Если подобные замены недоступны, то допустимо применить иной n-канальный ПТ с изолированным затвором, ориентируясь на сопротивление открытого канала не более 3...5 Ом, максимальное напряжение сток-исток - не менее 20 В и максимальный ток стока - не менее 300 мА. В этом случае в схему потребуется внести следующие изменения: R8 = 75 Ом, R10 = R11 = 68 кОм, C6 = 47 мкФ на 16 В. Но следует помнить, что время задержки при быстром рестарте немного уменьшится. Так как пороговый уровень включения у различных ПТ может значительно отличаться, то, возможно, потребуется подкорректировать время задержки включения реле подбором пары резисторов R10, R11 из условия их равенства.

Плавкую вставку FU1 можно использовать на ток 0,16 или 0,25 А, например, отечественную ВП4-10 0,2 А, имеющую малые габариты и гибкие выводы для монтажа на плату. Клеммники X1-X3 - серии DG127, XY304 или аналогичные. Как видно из схемы, центральный контакт в X1 не используется. Это сделано для того, чтобы увеличить зазор между проводниками сетевого питания.

Собранное устройство (его фото на рис. 4) не нуждается в налаживании и работает сразу после подачи питания. Его конструкция повторена много раз, и высокая надёжность подтверждена длительной эксплуатацией.

Рис. 4. Собранное устройство

На рис. 5 представлена схема, позволяющая исключить малогабаритный трансформатор. В качестве примера показана упрощённая схема блока питания УМЗЧ с напряжением +/-30 В. При этом немного изменены как схема, так и способ подключения модуля к усилителю.

Рис. 5. Схема, позволяющая исключить малогабаритный трансформатор

Модуль имеет двухполярное питание через гасящие резисторы R8, R9, поэтому формирование искусственной средней точки не требуется (резисторы R4, R5 на рис. 2). Для большей эффективности реле включены последовательно и добавлен конденсатор (C4) в качестве фильтра питания.

На компонентах VD1, R5, C3 выполнен однополупериодный выпрямитель, напряжение с которого подаётся на оптопару U3. В исходном состоянии за счёт резистора R10 транзистор VT3 находится в режиме насыщения, шунтируя конденсатор С5 до тех пор, пока не появится напряжение на излучающем диоде оптопары U3, после чего VT3 закрывается и С5 начинает медленно заряжаться, открывая транзистор VT4. При этом общее время задержки подключения нагрузки достигает 2...2,5 с.

При выключении усилителя конденсатор С3 быстро разряжается, обесточивая оптопару U3. Транзистор VT3 открывается и разряжает конденсатор C5, вследствие чего отключаются реле с нагрузкой. Таким образом, реализуется механизм быстрого выключения с общим временем не более 0,3...0,5 с.

Последующий старт включения происходит с разряженным конденсатором C5, поэтому, в отличие от схемы на рис. 2, его принудительная разрядка не требуется.

В качестве VT4 можно применить n-канальный ПТ с пороговым напряжением открывания 2...5 В и максимальным током стока не менее 1 А, например, IRF510-IRF540, IRF610-IRF640. Выпрямительный диод VD1 - любой с обратным напряжением не менее 100 В и прямым током от 100 мА: SF12-SF16, 1 N4002-1N4007 и пр. При использовании реле с обмотками, потребляющими ток 50 мА, необходимо изменить номиналы резисторов R8, R9 на 330 Ом.

Примечание: Для повышения надёжности работы между базой и эмиттером транзистора VT3 (рис. 1) надо установить резистор сопротивлением 50...100 кОм.

Литература

1. Атаев Д. И., Болотников В. А. Функциональные узлы усилителей высококачественного звуковоспроизведения. - М.: Радио и связь, 1989, с. 120.

2. UPC1237. Protector IC for stereo power amplifier. - URL: http://www.unisonic.com. tw/datasheet/UPCI 237.pdf (21.03.16).


Дата публикации: 10.07.2016

Мнения читателей
  • Rymkin / 05.02.2019 - 03:06
    Здравствуйте! Можно ли применить трансформатор на 15 вольт? В статье опечатка,"Заменить их можно более доступными реле SRD (T73) 12VDС-L-S-С фирмы SONGLE, допускающими ток коммутации до 10 А.", на самом деле марка реле SRD (T73) 12VDС-SL-С.

Устройство для защиты от выхода из строя динамиков акустических систем

Часто, при включении усилителя, мы слышим неприятный "хлопок" в динамиках своей акустики. Если регулятор громкости был близок к максимуму громкости, то мы рискуем "спалить" динамики в своих АС. Для того, чтобы защитить динамики и собственные уши от "хлопков" переходных процессов в момент включения, необходимо либо принять специфические решения в схемотехнике самого выходного каскада усилителя, либо просто обеспечить подключение акустических систем к выходу усилителя с небольшой задержкой, достаточной для бесшумного пуска усилка...

Предлагаемое устройство обеспечивает задержку по времени в момент включения усилителя (время задержки регулируется от 1 до 6 секунд) и обеспечивает защиту дорогостоящих динамиков при выходе из строя - пробое транзисторов выходного каскада или специализированных микросхем - аудио усилителей. В случае пробоя в выходном каскаде акустические системы будут мгновенно отключены, останутся целыми невредимыми.

Данное устройство защиты может использоваться совместно с любым стерео усилителем мощности с напряжениями питания выходного каскада до ±50В. Само устройство питается от однополярного источника питания напряжением 12В. Защитное устройство собрано на плате размерами 70х45 мм.

Подключение проводов от усилителя, к разъёмам подключения АС и к источнику питания осуществляется при помощи винтовых клемм установленных на плате. Максимальный ток, коммутируемый реле составляет 10А. По заказу возможно изготовление устройств защиты на токи до 30А. Данным устройством можно дооборудовать любой существующий усилитель либо применить в "новострое".

Стоимость собранного и проверенного устройства: 160 грн.

Стоимость набора для сборки: 120 грн.

Стоимость печатной платы с маской и маркировкой: 55 грн.

Что система защиты акустических систем в современном усилителе мощности быть должна и определились с требованиями, предъявляемыми к подобным системам.

Одно из основных требований — это быстродействие . При любом потенциально опасном для колонок воздействии они должны быть отключены от выхода усилителя мощности как можно быстрее.

Рассмотрим систему защиты последовательно: от входа до выхода (реле), и определим, как различные узлы системы влияют на её быстродействие.

На входе системы защиты акустических систем для выделения из звукового сигнала постоянной составляющей обычно устанавливается фильтр низкой частоты (ФНЧ).

Чтобы оптимизировать быстродействие системы защиты и в тоже время исключить ложные срабатывания необходимо определить верхнюю граничную частоту ФНЧ . На практике для однополосных систем предел в 20Гц вполне достаточен и обеспечивает минимальную задержку в 25 мс. Для реального звукового сигнала из-за несимметричности полуволн на более высоких частотах большей задержки не требуется. Кроме того, в широкополосных акустических системах средне- и высокочастотные динамики чаще всего подключаются через конденсаторы фильтров кроссовера, которые обеспечивают их дополнительную защиту от постоянной составляющей.

Для систем bi-amping или tri-amping придётся использовать несколько систем защиты, пересчитав номиналы элементов ФНЧ для повышения быстродействия системы и надёжной защиты более чувствительных к постоянной составляющей СЧ- и ВЧ-динамиков.

В качестве ФНЧ обычно используется простой однозвенный фильтр с наклоном характеристики 6 дБ/октаву. Может показаться, что лучше более сложные фильтры: двух или трёхзвенные. Но, как показали эксперименты, с ними быстродействие системы защиты получается хуже, т.к. обеспечивая лучшую фильтрацию высоких частот, они хуже (с большей задержкой) выделяют постоянную составляющую сигнала.

В таблице приведены значения ёмкости конденсатора фильтра для использования системы защиты с различными системами усиления: широкополосными, bi-amping, tri-amping и с различными частотами разделения для многополосных систем:

Резистор (R1 и R2) во всех случаях используется на 100 кОм.

Не следует использовать в качестве конденсатора С1 полярные электролитические конденсаторы , потому как даже небольшое напряжение обратной полярности часто приводит их к выходу из строя, что снижает надёжность системы. Если есть проблемы с неполярным электролитическим конденсатором, то его легко можно заменить двумя полярными, включив их по представленной схеме:

Если с некоторыми типами музыки на большой громкости будут наблюдаться ложные срабатывания системы защиты, то ёмкость конденсатора фильтра придётся увеличить. Но максимум до 47мкФ иначе время задержки будет недопустимо велико.

Следующий элемент влияющий на быстродействие системы — детектор напряжения. Именно он определяет порог срабатывания системы . Разумеется, чем ниже порого срабатывания, тем мы имеем более быстродействующую систему.

Рассмотрим несколько типовых схем детекторов.

Довольно типичная схема даже для промышленных аппаратов:

При тестировании схема показала надёжное срабатывание при положительном напряжении на входе порядка 0,8-1В и отрицательном напряжении свыше -4В. Если для положительного напряжения порог срабатывания хороший, то для отрицательного напряжение полученное значение оставляет желать лучшего.

Другая схема, довольно популярная на просторах Рунета показала примерно аналогичные результаты:

Не буду утомлять вас описанием всех исследованных схем. Приведу пример схемы, которая показала очень хорошие результаты — одинаковые значения напряжения срабатывания (порядка 0,7В) для положительного и отрицательного входных напряжений:

Увеличение по клику

Кроме того данная схема обеспечивает задержку подключения акустических систем после включения усилителя и отключение акустических систем при пропадании любого из напряжений питания усилителя.

В качестве оптронов здесь отлично работают оптроны PC817 из компьютерных блоков питания. Такие же (или аналогичные) оптроны можно найти в блоках питания мониторов, DVD-проигрывателях и даже зарядках для мобильных телефонов и смартфонов.

Следующий способ повышения быстродействия системы защиты довольно экзотический, так как в радиолюбительских конструкциях практически не встречается (из-за некоторого усложнения схемы). Способ состоит в снижении напряжения на катушке реле после её срабатывания. Дело в том, что указанное на реле напряжение — это напряжение срабатывания. Большинство современных реле позволяют после замыкания контактов снизить напряжение на катушке в 2-3 раза. При этом контакты останутся по-прежнему надёжно замкнуты, а время отпускания контактов (т.е. по сути время срабатывания защиты) сократится в несколько раз. Но, как уже было сказано, такой способ требует усложнения схемы.

Следующий способ повышения быстродействия системы защиты достаточно простой, дешёвый, но почему-то так же редко встречается в практических конструкциях.

Сначала немного теории. Как известно, обмотка реле по сути является катушкой индуктивности из-за чего при подключении или отключении напряжения на её контактах в катушке возникает противо-ЭДС. Чтобы вы имели представление о величине противо-ЭДС приведу результаты экспериментов.

Для реле с относительно небольшой катушкой на 24 В (сопротивление обмотки было 730 Ом) напряжение противо-ЭДС, которое наводилось на обмотке при отключении составило свыше 500В . Понятно, что без принятия соответствующих мер по снижению напряжения противо-ЭДС, надёжность такой системы будет весьма сомнительной. Существует риск выхода из строя и самого реле при частых срабатываниях, и силового транзистора, управляющего реле. Либо нам потребуется дорогой высоковольтный транзистор.

Избавится от противо-ЭДС можно простым народным методом — поставить диод в обратном включении параллельно обмотки реле:

Однако, многие радиолюбители не знают, что эта мера приводит к существенному снижению быстродействия реле. Эксперименты проводились для реле типа OMRON G6B-2214P-US-DC12. Без применения защитного диода время размыкания контактов составило около 1,2 мсек. После установки защитного диода время размыкания контактов увеличилось до 8 мсек, т.е. в разы!

Существенно сократить время размыкания реле при наличии защитного диода поможет... стабилитрон :

Как показали эксперименты, для такого варианта время размыкания контактов составляет всего 2,5 мсек, т.е. всего в два раза выше, чем без защитных цепей.

Стабилитрон необходимо выбирать с напряжением стабилизации равному напряжению срабатывания реле.

Приведенные выше советы и схемы позволяют радиолюбителям довольно легко доработать уже имеющиеся системы защиты акустических систем как в самодельных, так и в промышленных аппаратах с целью повышения их быстродействия.

Как мы уже выяснили в , для обеспечения надёжной защиты акустических систем наша система защиты должна быть надёжной сама по себе. О том, что влияет на надёжность схемы и как её улучшить поговорим в следующий раз.

Продолжение следует.


Существует множество вариантов зашиты АС от постоянного напряжения, щелчков при включении и выключении. Самые совершенные из них собраны на микроконтроллерах, управляют большим числом каналов, имеют дополнительные функции, например - датагорский кит

Удобны, функциональны и малогабаритны так же устройства на специализированных микросхемах. К сожалению, они не всегда доступны, их доставка по почте может занять много времени.

Мне стало интересно - какая схема из дискретных элементов проста, дёшева, функциональна и нуждается в минимальной настройке. Наиболее отвечающую, на мой взгляд, этим требованиям схему, предлагаю вашему вниманию.
Поскольку статья рассчитана в основном на начинающих радиолюбителей, я постараюсь подробно описывать даже простые вещи.

Прототип защиты АС - схема А. Котова

На первый взгляд, есть широкий выбор схем, но при ближайшем рассмотрении оказывается, что они имеют недостатки - много деталей, дефицитные детали, низкая чувствительность, необходимость настройки, работоспособность в узком диапазоне напряжений питания и т. п.

Наиболее подходящей оказалась .

Однако, и эта схема не лишена недостатков:
- нет быстрого отключения АС при выключении усилителя,
- строго определенное напряжение питания,
- весь потребляемый ток протекает через светодиод,
- режим работы с «оторванной базой» VT10.
Кроме того, нет диаграммы напряжений и рекомендаций по настройке, нет рисунка печатной платы.

Усовершенствованная схема устройства защиты акустических систем

Эти недостатки легко устранимы, вот доработанный мной вариант.

Сохранена и продолжена нумерация деталей схемы А. Котова.
Хочу отметить достоинства и особенности схемы:
- задержка включения составляет оптимальные 4 секунды, определяется цепочкой R5C3,
- цепь D5R8R9C4 при выключении из сети позволяет быстро обесточить реле и отключить АС,
- после срабатывания защиты (отключении реле), конденсатор С3 разряжается быстро, а заряжается через резистор R5 медленно, поэтому не будет быстрых хаотичных переключений,
- устройство работает в широком диапазоне напряжений, от напряжения срабатывания реле (и плюс 2 В) до 36 В (предел для TL431),
- практически единственный резистор, требующий подбора - R7 служит для погашения избыточного для реле напряжения, номиналы остальных резисторов могут отличаться в несколько раз и не требуют замены в широком диапазоне напряжений питания,
- все элементы, кроме TL431, работают при очень малых токах, что обеспечивает высокую надежность,
- применение TL431 обеспечивает ключевой режим работы реле,
- напряжения на конденсаторах кроме С4 очень малы, не более 2,5 В, что позволяет использовать емкости на низкие напряжения, поэтому я испытал вариант с одиночными полярными конденсаторами С1 и С2 на низкое напряжение,
- годится любой светодиод (лучше яркий) т. к. ток через него задается резистором,
- чувствительность очень высока (порядка 1 В), ее лучше загрубить, для этого на плате предусмотрены площадки под SMD резисторы (на схеме серым цветом).

Собственный БП

Если запитать УЗ от основного БП усилителя (как у А. Котова), при выключении сети, реле не отпустит сразу из-за больших емкостей БП и возможен щелчок, треск и т. п. Здесь же из-за очень малой ёмкости С4 = 1-4,7 мкФ реле отпускает сразу.

Можно взять переменку с трансформатора основного БП УНЧ, тогда возможно придется изменить делитель R8R9, чтобы снизить напряжение.

Для «универсальности» данной схемы нужен блок питания с маломощным трансформатором с низким напряжением вторичной обмотки. Я использовал трансформатор ~230/12 В, мощностью 2 ВА. Блок питания выполнен на плате той же ширины, что и узел защиты, их удобно разместить на одной плате.


Наличие отдельного блока питания позволяет использовать узел защиты с любым усилителем, в том числе с макетируемым, что особенно удобно т. к. АС подвергаются повышенной опасности именно в этом случае.

Применённые детали и настройка

Установлено реле «OMRON G2R-2» на 12VDC в прозрачном корпусе. Это сделано не случайно - хотя оно имеет габариты большие, чем у аналогичных в неразборном непрозрачном корпусе, его можно открывать и чистить контакты. Рекомендую при использовании неразборного реле, заранее осторожно распилить его корпус так, чтобы крышку с него можно было бы снимать и ставить на место. Особенно советую в случае б/у реле.

Герметичные реле обычно меньше по размерам, поэтому легко устанавливаются с минимальными доработками печатной платы. Поскольку я расположил реле и зажимы с винтовыми клеммами достаточно плотно, при повторении платы надо убедиться в идентичности размеров зажимов, в противном случае чуть-чуть подкорректировать печатную плату. Можно обойтись без зажимов, это даже надежнее, но неудобно, особенно при настройке макетов усилителей.

При отсутствии ошибок в монтаже и исправных деталях, схема начинает работать сразу , надо только рассчитать резистор ограничения тока через обмотку реле.
Например, питание +18 В, реле на 12 В сопротивлением 280 Ом. Рабочий ток реле 12 В/280 Ом = 43 мА.
Погасить надо 18В − 12В − 2В (падение напряжения на открытом TL431) = 4 Вольта.
4 В / 43 мА = 100 Ом. Мощность резистора 43 мА х 4 В = 170 мВт, т. е. нужен резистор от 0,25 Вт и выше. На плате этот резистор «стоит», это сделано, чтобы можно было ставить резисторы разных габаритов и с запасом по мощности до 2 Вт.

Все диоды, кроме шунтирующего обмотку реле, практически любые маломощные, надо только не забыть, что маркировка полоской на корпусе диодов КД522 и других советских, обратная импортной маркировке.

При проблемах в работе, в первую очередь надо проверить правильность установки деталей, особенно диодов, транзисторов и TL431. Затем проверить качество паек (у меня плохо паялись выводы диодов), для этого надо хорошо промыть плату и осмотреть пайки с лупой (или с хорошим глазом).
Затем проверить режимы по постоянному току, напряжения на базах транзисторов должны соответствовать указанным на схеме ± 0,1 В.

Поскольку среди начинающих любителей есть страсть к гигантомании и усилителям мощностью в сотни Ватт и с напряжением питания усилителей порядка ± 50 В, надо помнить, что чем больше мощность усилителя, тем большие токи протекают через контакты реле, при высоких напряжениях возрастает вероятность возникновения дуги между разомкнутыми контактами реле.

В этом случае на данной плате может быть установлено любое реле с одной группой контактов, это реле будет промежуточным и управлять другим, более мощным реле с контактами, рассчитанными на бОльший ток и с увеличенным расстоянием между разомкнутыми контактами. К этому мощному реле можно будет подвести провода бОльшего сечения.

Универсальность данного узла защиты со «своим» питанием и в том, что его можно подключить к выходам мостового (как правило, повышенной мощности) усилителя. Общий провод соединяют не с общим проводом усилителя, а с одним выходом усилителя, а один вход узла защиты со вторым выходом мостового усилителя.

При установке узла защиты в готовую конструкцию, надобность в отдельном блоке питания отпадает (для обычного, не мостового усилителя).

Итого

Я сделал два экземпляра - с обычными резисторами и SMD, плата позволяет это сделать. Впечатления от устройств очень хорошие. Длину платы можно уменьшить на 1…2 см, особенно с резисторами SMD, но я предпочитаю широкие дорожки, позволяющие неоднократно перепаивать детали и прощающие смещения при сверлении отверстий; достаточные промежутки между дорожками.


Не надо забывать, что подобное устройство защищает только НЧ-головки от постоянных напряжений и все головки от переходных процессов в усилителе, в том числе при выходе усилителей из строя и не защищает ВЧ-головки при перегрузках и возбуждении усилителей. Вместе с тем, данное схемное решение позволяет подключать датчики перегрева, ограничения (клиппирования), возбуждения для сохранности всех головок АС.

Кроме того (что используется в ряде усилителей) можно управлять подключением к выходу усилителя одной или несколькими пар АС с помощью переключателя на лицевой панели усилителя, при этом не надо пропускать сильноточные сигнальные цепи через данный переключатель.

Проверили его работоспособность, оценили качество звука основного канала. Самое время добавить в него модуль защиты от случайных замыканий, чтоб вся работа не пошла лесом, из-за неизбежных случайностей в процессе его эксплуатации. Также соберём остальные маломощные каналы УНЧ, для подключения тыловых колоночек.

ЗАЩИТА АС УМЗЧ

Изначально задумал использовать схему защиты от БРИГ , но затем читая отзывы о симисторной защите захотел попробовать ее. Блоки защиты были сделаны в самом конце, тогда было туго с финансами, а симисторы и прочие компоненты схемы у нас оказались довольно дороги, поэтому вернулся к релейной защите. Напоминаю, что все схемы находятся обзора.

В итоге были собраны три блока защиты, один из них для сабвуферного усилителя, а два остальных для каналов ОМ.


В сети можно найти большое количество схем блоков защиты, но эта схема перепробована мной неоднократно. При наличии постоянного напряжения на выходе (выше допустимого) защита мгновенно срабатывает спасая динамическую головку. После подачи питания реле замыкается, а при срабатывания схемы оно должно размыкаться. Защита включает головку с небольшой задержкой - это тоже в свою очередь, является дополнительной страховкой и щелчок после включения, почти не слышен.


Компоненты блока защиты могут отклоняться от указанного, Основной транзистор можно заменить на наш КТ815Г , использовал высоковольтные транзисторы MJE13003 - их у меня навалом, кроме того, они довольно мощные и не перегреваются в ходе работы, поэтому в теплоотводе не нуждаются. Маломощные транзисторы можно заменить на S9014, 9018, 9012 , даже на КТ315 , оптимальный вариант - 2N5551 .


Реле на 7-10 Ампер, подобрать можно любое реле на 12 или 24 Вольта, в моем случае на 12 Вольт.


Блоки защиты для каналов ОМ установлены возле трансформатора второго инвертора, работает все это дело довольно четко, при максимальной громкости защита может сработать (ложно) крайне редко.

МАЛОМОЩНЫЕ УСИЛИТЕЛИ

Долго решал какой усилитель использовать для маломощных акустических систем. Как дешевый вариант вначале решил использовать микросхемы TDA2030 , потом подумал, что 18-ти ватт на канал маловато и перешел к TDA2050 - умощненный аналог на 32 ватта. Затем сравнив звучание основных вариантов выбор впал на любимую микросхему - LM1875 , 24 ватта и качество звучания на 2-3 порядка лучше, чем у первых двух микросхем.


Долго копался в сети, но печатную плату под свои нужды так и не нашел. Сидя за компом несколько часов была создана своя версия для пятиканальноо усилителя на микросхемах LM1875 , плата получилась довольно компактной, на плате также предусмотрен блок выпрямителей и фильтров. Этот блок был полностью собран за 2 часа - все компоненты к тому времени имелись в наличии.


ВИДЕО УСИЛИТЕЛЯ

Качество звучания этих микросхем на очень высоком уровне, в конце концов разряд Hi-Fi , отдаваемая мощность приличная - 24 ватта синуса, но в моем случае мощность повышена путем повышения питающего напряжения до 24-х вольт, в таком случае можно получить порядка 30 ватт выходной мощности. На основной плате усилителя у меня было предусмотрено место для 4-х канального усилителя на TDA2030 , но чем-то оно мне не понравилось...


Плата для LM крепится на основную плату УНЧ через стойки в виде трубок и болтов. Питание для этого блока берется со второго инвертора, предусмотрена отдельная обмотка. Выпрямитель и фильтрующие конденсаторы расположены непосредственно на плате усилителя. В качестве выпрямительных диодов уже традиционные КД213А .

Дросселей для сглаживания ВЧ помех не использовал, да и нет нужды их применять, поскольку даже в довольно брендовых автомобильных усилителях их часто не ставят. В качестве теплоотвода использовал набор дюралюминиевых болванок 200х40х10 мм.


На плату также укреплен кулер, который одновременно отводит теплый воздух с этого блока и отдувает теплоотводы инверторов. С электроникой аудиокомплекса полностью разобрались - переходим к С уважением - АКА КАСЬЯН .

Обсудить статью ДОМАШНИЙ УСИЛИТЕЛЬ - УНЧ И БЛОК ЗАЩИТЫ