Выбор бетона для строительных конструкций. Расчетные сопротивления и модули упругости для различных строительных материалов

СНиП 2.06.08-87

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

Бетонные и железобетонные конструкции

гидротехнических сооружений

Дата введения 1988-01-01

РАЗРАБОТАНЫ ВНИИГ им. Б. Е. Веденеева Минэнерго СССР (канд. техн. наук А. П. Пак - руководитель работ; А. В. Караваев; кандидаты техн. наук А. Д. Кауфман, М. С. Ламкин. А. Н. Марчук, Л. П. Трапезников, В. Б. Судаков; доктора техн. наук Л. А. Гордон, И. Б. Соколов) совместно с Гидропроектом им. С. Я. Жука Минэнерго СССР (А. Г. Осколков, Т. И. Сергеева; д-р техн. наук С. А. Фрид; С. А. Березинский) ; ГрузНИИЭГС Минэнерго СССР (д-р техн. наук Г. П. Вербицкий); Гипроречтрансом Минречфлота РСФСР (канд. техн. наук В. Э. Даревский); Ленморниипроектом Минморфлота СССР (канд. техн. наук А. А. Долинский): ВО Союзводпроект Минводхоза СССР (канд. техн. наук С. 3. Рагольский).

ВНЕСЕНЫ Минэнерго СССР.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Управлением стандартизации и технических норм в строительстве Госстроя СССР (Д. В. Петухов).

УТВЕРЖДЕНЫ постановлением Государственного строительного комитета СССР от 26 февраля 1987г. № 37.

С введением в действие СНиП 2.06.08-87 "Бетонные и железобетонные конструкции гидротехнических сооружений" с 1 января 1988 г. утрачивают силу СНиП II-56-77 "Бетонные и железобетонные конструкции гидротехнических сооружений".

В СНиП 2.06.08-87 "Бетонные и железобетонные конструкции гидротехнических сооружений" внесены исправления опечаток, опубликованных в БСТ № 1 1989 года.

Исправления внесены юридическоим бюро "Кодекс".

Настоящие нормы распространяются на проектирование вновь строящихся и реконструируемых бетонных и железобетонных конструкций гидротехнических сооружений, находящихся постоянно или периодически под воздействием водной среды.

Элементы бетонных и железобетонных конструкций гидротехнических сооружений, не подвергающиеся воздействию водной среды, следует проектировать в соответствии с требованиями СНиП 2.03.01-84; бетонные и железобетонные конструкции мостов, транспортных туннелей и труб, расположенные под насыпями автомобильных и железных дорог, следует проектировать по СНиП 2.05.03-84.

В проектах сооружений, предназначенных для строительства в сейсмических районах, в Северной строительно-климатической зоне, в районах распространения просадочных, набухающих и слабых по физико-механическим свойствам грунтов, должны соблюдаться дополнительные требования, предъявляемые к таким сооружениям соответствующими нормативными документами, утвержденными или согласованными Госстроем СССР.

Основные буквенные обозначения и их индексы, принятые в настоящих нормах согласно СТ СЭВ 1565-79, приведены в справочном приложении 1.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. При проектировании бетонных и железобетонных конструкций гидротехнических сооружений необходимо соблюдать требования СНиП 2.06.01-86 и строительных норм и правил по пpoeктиpoвaнию отдельных видов гидротехнических сооружений.

1.2. Выбор типа бетонных и железобетонных конструкций (монолитных, сборно-монолитных, сборных, в том числе предварительно напряженных и заанкеренных в основание) должен производиться исходя из условий технико-экономической целесообразности их применения в конкретных условиях строительства с учетом максимального снижения материалоемкости, энергоемкости, трудоемкости и стоимости строительства.

При выборе элементов сборных конструкций следует рассматривать предварительно напряженные конструкции из высокопрочных бетонов и арматуры, а также конструкции из легких бетонов.

Типы конструкций, основные размеры их элементов, а также степень насыщения железобетонных конструкций арматурой необходимо принимать на основании сравнения технико-экономических показателей вариантов.

1.3. Элементы сборных конструкций должны отвечать условиям механизированного изготовления на специализированных предприятиях.

Следует рассматривать целесообразность укрупнения сборных конструкций с учетом условий их изготовления, транспортирования, грузоподъемности монтажных механизмов.

1.4. Для монолитных конструкций следует предусматривать унифицированные размеры, позволяющие применять инвентарную опалубку.

1.5. Конструкции узлов и соединений элементов в сборных конструкциях должны обеспечивать надежную передачу усилий, прочность самих элементов в зоне стыка, а также связь дополнительно уложенного бетона в стыке с бетоном конструкции.

1.6. При проектировании конструкций гидротехнических сооружений, недостаточно апробированных практикой проектирования и строительства, для сложных условий статической и динамической работы конструкций (когда характер напряженного и деформированного состояния с необходимой достоверностью не может быть определен расчетом) следует проводить исследования.

1.7. Для обеспечения требуемой водонепроницаемости и морозостойкости конструкций, а также для уменьшения противодавления воды в их расчетных сечениях необходимо предусматривать следующие мероприятия:

укладку бетона соответствующих марок по водонепроницаемости и морозостойкости со стороны напорной грани и наружных поверхностей (особенно в зонах переменного уровня воды) ;

применение поверхностно-активных добавок к бетону (воздухововлекающих, пластифицирующих и др.);

гидроизоляцию и теплогидроизоляцию наружных поверхностей сооружений;

обжатие бетона со стороны напорных граней и со стороны поверхностей сооружения, испытывающих растяжение от эксплуатационных нагрузок;

устройство дренажа со стороны напорной грани.

Выбор мероприятия следует производить на основе технико-экономического сравнения вариантов.

2. МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И

ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

2.1. Бетон для бетонных и железобетонных конструкций гидротехнических сооружений должен удовлетворять требованиям ГОСТ 26633-85 и настоящего раздела.

2.2. При проектировании бетонных и железобетонных конструкций гидротехнических сооружений в зависимости от вида и условий работы необходимо устанавливать показатели качества бетона, основными из которых являются следующие:

а) классы бетона по прочности на сжатие, которые отвечают значению гарантированной прочности бетона, МПа, с обеспеченностью q = 0,95. В массивных сооружениях допускается применение бетонов со значениями гарантированной прочности с обеспеченностью q = 0,9.

В проектах необходимо предусматривать следующие классы бетона по прочности на сжатие: В5, В7,5, В10, В12,5, В15, В20, В25, В30, В35;

б) классы бетона по прочности на осевое растяжение. Эту характеристику устанавливают в тех случаях, когда она имеет главенствующее значение и контролируется на производстве.

В проектах необходимо предусматривать следующие классы бетона по прочности на осевое растяжение:

в) марки бетона по морозостойкости.

В проектах необходимо предусматривать следующие марки бетона по морозостойкости: F50, F75, F100, F150, F200, F300, F400, F500, F600.

Марку бетона по морозостойкости следует назначать в зависимости от климатических условий и числа расчетных циклов попеременного замораживания и оттаивания в течение года (по данным долгосрочных наблюдений), с учетом эксплуатационных условий. Для энергетических сооружений марку бетона по морозостойкости следует принимать по табл. 1.

Таблица 1

Климатические условия

Марка бетона по морозостойкости при числе циклов попеременного замораживания и оттаивания в год

до 50 включ.

Св. 50 до 75

Св. 75 до 100

Св. 100 до 150

Св. 150 до 200 включ.

Умеренные

Особо суровые

Примечания: 1. Климатические условия характеризуются среднемесячной температурой наиболее холодного месяца: умеренные- выше минус 10°С суровые - от минус 10 до минус 20°С включ., особо суровые - ниже минус 20°С.

2. Среднемесячные температуры наиболее холодного месяца для района строительства определяются по СНиП 2.01.01-82, а также по данным гидрометеорологической службы.

3. При числе расчетных циклов более 200 следует применять специальные виды бетонов или конструктивную теплозащиту;

г) марки бетона по водонепроницаемости.

В проектах необходимо предусматривать следующие марки бетона по водонепроницаемости: W2, W4, W6, W8, W10, W12, W16, W18, W20.

Марку бетона по водонепроницаемости назначают в зависимости от градиента напора, определяемого как отношение максимального напора в метрах к толщине конструкции (или расстоянию от напорной грани до дренажа) в метрах, и температуры контактирующей с сооружением воды, , по табл. 2, или в зависимости от агрессивности среды в соответствии со СНиП 2.03.11-85.

В нетрещиностойких напорных железобетонных конструкциях и в нетрещиностойких безнапорных конструкциях морских сооружений проектная марка бетона по водонепроницаемости должна быть не ниже W4.

Таблица 2

Температура воды.

Марка бетона по водонепроницаемости при градиентах напора

до 5 включ.

св. 10 до 20

св. 20 до 30 включ.

До 10 включ.

Св. 10 до 30 включ.

Примечание. Для конструкций с градиентом напора свыше 30 следует назначать марку бетона по водонепроницаемости W16 и выше.

2.3. При надлежащем обосновании допускается устанавливать промежуточные значения классов бетона по прочности на сжатие, отличающиеся от перечисленных в п. 2.2, а также классы В40 и выше. Характеристики этих бетонов следует принимать по СНиП 2.03.01-84 и по интерполяции.

2.4. К бетону конструкций гидротехнических сооружений следует предъявлять дополнительные, устанавливаемые в проектах и подтверждаемые экспериментальными исследованиями, требования: по предельной растяжимости, отсутствию вредного взаимодействия щелочей цемента с заполнителями, сопротивляемости истиранию потоком воды с донными и взвешенными наносами, стойкости против кавитации и химического воздействия, тепловыделению при твердении бетона.

2.5. Срок твердения (возраст) бетона, отвечающий его классам по прочности на сжатие, на осевое растяжение и марке по водонепроницаемости, принимается, как правило, для конструкций речных гидротехнических сооружений 180 сут, для сборных и монолитных конструкций морских и речных портовых сооружений 28 сут. Срок твердения (возраст) бетона, отвечающий его проектной марке по морозостойкости, принимается 28 сут, для массивных конструкций, возводимых в теплой опалубке, 60 сут.

Если известны сроки фактического нагружения конструкций, способы их возведения, условия твердения бетона, вид и качество применяемого цемента, то допускается устанавливать класс бетона в ином возрасте.

Для сборных, в том числе предварительно напряженных конструкций, отпускную прочность бетона на сжатие следует принимать в соответствии с ГОСТ 13015.0-83, но не менее 70% прочности принятого класса бетона.

2.6. Для железобетонных элементов из тяжелого бетона, рассчитываемых на воздействие многократно повторяющейся нагрузки, и железобетонных сжатых стержневых конструкций (набережные типа эстакад на сваях, сваях-оболочках и т. п.) следует применять бетон класса по прочности на сжатие не ниже В15.

2.7. Для предварительно напряженных элементов следует принимать бетон класса по прочности на сжатие: не менее В15 - для конструкций со стержневой арматурой; не менее В30 - для элементов, погружаемых в грунт забивкой или вибрированием.

2.8. Для замоноличивания стыков элементов сборных конструкций, которые в процессе эксплуатации могут подвергаться воздействию отрицательных температур наружного воздуха или воздействию агрессивной воды, следует применять бетоны проектных марок по морозостойкости и водонепроницаемости не ниже принятых для стыкуемых элементов.

2.9. Следует предусматривать широкое применение добавок поверхностно-активных веществ (СДБ, СНВ, ЛХД и др.), а также применение в качестве активной минеральной добавки золы-уноса тепловых электростанций, отвечающей требованиям соответствующих нормативных документов.

2.10. Если по технико-экономическим расчетам для повышения водонепроницаемости бетонных и железобетонных конструкций гидротехнических сооружений целесообразно использовать бетоны на напрягающем цементе, а для снижения нагрузки от собственного веса конструкции - легкие бетоны, то классы и марки таких бетонов следует принимать по СНиП 2.03.01-84.

2.11. Нормативные и расчетные сопротивления бетона в зависимости от классов бетона по прочности на сжатие и на осевое растяжение следует принимать по табл. 3.

В случае принятия промежуточных классов бетона нормативные и расчетные сопротивления следует принимать по интерполяции.

2.12. Коэффициенты условий работы бетона следует принимать по табл. 4.

2.13. При расчете железобетонных конструкций на выносливость расчетные сопротивления бетона и надлежит умножать на коэффициент условий работы , принимаемый по табл. 5.

2.14. Расчетное сопротивление бетона при всестороннем сжатии , МПа, следует определять по формуле

(1)

Таблица 3

Нормативные и расчетные сопротивления

бетона, МПа (кгс/куб.см)

Класс бетона

нормативные сопротивления; расчетные сопротивления для предельных состояний второй группы

расчетные сопротивления для предельных состояний первой группы

растяжение осевое

сжатие осевое (призменная прочность)

растяжение осевое

По прочности на сжатие

По прочности на растяжение

где - коэффициент, принимаемый на основании результатов экспериментальных исследований; при их отсутствии для бетонов классов по прочности на сжатие В15, В20, В25 коэффициент допускается определять по формуле

Наименьшее по абсолютной величине главное напряжение, Мпа;

Коэффициент эффективной пористости.

Таблица 4

Факторы, обусловливающие введение коэффициентов условий работы бетона

Коэффициенты условий работы бетона

условное обозначение

значение

Особые сочетания нагрузок для бетонных конструкций

Многократное повторение нагрузки

См. табл. 5

Железобетонные конструкции

Бетонные конструкции:

внецентренно сжатые элементы, не подверженные действию агрессивной среды и не воспринимающие напор воды, рассчитываемые без учета сопротивления растянутой зоны сечения

другие бетонные элементы

Влияние двухосного сложного напряженного состояния сжатие-растяжение на прочность бетона

Примечание. При наличии нескольких факторов, действующих одновременно, в расчет вводится произведение соответствующих коэффициентов условий работы. Произведение должно быть не менее 0,45.

Для сооружений I и II классов коэффициент надлежит определять экспериментальным путем. При отсутствии экспериментальных данных допускается коэффициент принимать равным: при ; при

2.15. Начальный модуль упругости бетона массивных конструкций при сжатии и растяжении следует принимать по табл. 6.

При расчете на прочность и по деформациям тонкостенных стержневых и плитных элементов модуль упругости бетона следует во всех случаях принимать по табл. 6 как для бетона с максимальным диаметром крупного заполнителя 40 мм и осадкой конуса, равной 8 см и более.

Модуль упругости бетонов, подвергнутых для ускорения твердения тепловой обработке при атмосферном давлении или в автоклавах, следует принимать по СНиП 2.03.01-84.

Модуль сдвига бетона следует принимать равным .

Начальный коэффициент поперечной деформации (коэффициент Пуассона) v принимается равным: для массивных конструкций - 0,15, для стержневых и плитных конструкций - 0,20.

Плотность тяжелого бетона при отсутствии опытных данных допускается принимать равной 2,3-2,5 т/куб.м.

АРМАТУРА

2.16. Для армирования железобетонных конструкций гидротехнических сооружений следует применять арматурную сталь, отвечающую требованиям соответствующих государственных стандартов или утвержденных в установленном порядке технических условий и принадлежащую к одному из следующих видов:

стержневая арматурная сталь:

горячекатаная - гладкая класса А-I, периодического профиля классов А-II, A-III, A-IV, A-V; термически и термомеханически упрочненная - периодического профиля классов Ат-IIIС, Aт-IVC, Aт-VCK;

упрочненная вытяжкой класса А-IIIв;

проволочная арматурная сталь:

хоподнотянутая проволока обыкновенная - периодического профиля класса Вр-I.

Таблица 5

Состояние бетона по влажности

Коэффициенты условий работы бетона при

многократно повторяющейся нагрузке и

коэффициенте асимметрии цикла ,. равном

Естественной влажности

Водонасыщенный

Примечания: 1. Коэффициент для бетонов, марка которых установлена в возрасте 28 сут, принимается в соответствии с требованиями СНиП 2.03.01-84.

2. Коэффициент равен:

,

где и - cответственно наименьшее и наибольшее напряжения в бетoне в пределах цикла изменения нагрузки.

Таблица 6

Начальные модули упругости бетона при сжатии и

растяжении , МПа (кгс/кв.см),

Продолжение табл.6

Ocадкa конуса бетонной смеси, см

Максимальный размер крупного заполнителя, мм

Начальные модули упругости бетона при сжатии

и растяжении , МПа (кгс/кв.см),

при классе бетона по прочности на сжатие

Для закладных деталей и соединительных накладок следует применять, как правило, прокатную углеродистую сталь.

Марки арматурной стали для армирования железобетонных конструкций в зависимости от условий их работы и средней температуры наружного воздуха наиболее холодной пятидневки в районе строительства следует принимать по СНиП 2.03.01-84, а для портовых и транспортных сооружений также по СНиП 2.05.03-84.

Арматурную сталь классов А-IIIв, A-IV и A-V рекомендуется применять для предварительно напряженных конструкций.

2.17. Нормативные и расчетные сопротивления основных видов арматуры, применяемой в железобетонных конструкциях гидротехнических сооружений, в зависимости от класса арматуры должны приниматься по табл. 7.

При расчете арматуры по главным растягивающим напряжениям (балки-стенки, короткие консоли и др.) расчетные сопротивления арматуры следует принимать как для продольной арматуры на действие изгибающего момента.

При надлежащем обосновании для железобетонных конструкций гидротехнических сооружений допускается применять стержневую и проволочную арматуру других классов. Их нормативные и расчетные характеристики следует принимать по СНиП 2.03.01-84.

2.18. Коэффициенты условий работы ненапрягаемой арматуры следует принимать по табл. 8, а напрягаемой арматуры - по СНиП 2.03.01-84.

Коэффициент условий работы арматуры при расчете по предельным состояниям второй группы принимается равным единице.

2.19. Расчетное сопротивление ненапрягаемой растянутой стержневой арматуры при расчете на выносливость следует определять по формуле

где - коэффициент условий работы, который определяется: для арматуры классов А-I, А-II, А-III - по формуле (4), а для других классов арматуры - по СНиП 2.03.01-84.

, (4)

здесь - коэффициент, учитывающий класс арматуры, принимаемый по табл. 9;

Коэффициент, учитывающий диаметр арматуры, принимаемый по табл. 10;

Коэффициент, учитывающий тип сварного стыка, принимаемый по табл. 11;

Коэффициент асимметрии цикла, где и -соответственно наименьшее и наибольшее напряжения в растянутой арматуре.

Растянутая арматура на выносливость не провеpяется, если коэффициент , определяемый по формуле (4), больше единицы.

Таблица 7

Вид и класс арматуры

Нормативные сопротивления растяжению и расчетные сопротивления растяжению арматуры для предельных состояний второй группы, МПа(кгс·кв.см)

Расчетные сопротивления арматуры для предельных состояний первой группы, МПа (кгс/кв.см)

растяжению

продольной

поперечной (хомутов, отогнутых стержней)

Стержневая арматура классов:

А-III, диаметром, мм:

Упрочненная вытяжкой класса A-IIIв с контролем:

напряжений и удлинений

только удлинений

Проволочная арматура класса Bp-I,диаметром,мм:

*В сварных каркасах для хомутов из арматуры класса А-III, диаметр которых меньше 1/3 диаметра продольных стержней, равно 255 МПа (2600 кгс/кв.см).

При отсутствии сцепления арматуры с бетоном равно нулю.


При расчете строительных конструкций нужно знать расчетное сопротивление и модуль упругости для того или иного материала. Здесь представлены данные по основным строительным материалам.

Таблица 1. Модули упругости для основных строительных материалов

Материал
Модуль упругости
Е, МПа
Чугун белый, серый (1,15...1,60) · 10 5
Чугун ковкий 1,55 · 10 5
Сталь углеродистая (2,0...2,1) · 10 5
Сталь легированная (2,1...2,2) · 10 5
Медь прокатная 1,1 · 10 5
Медь холоднотянутая 1,3 · 10 3
Медь литая 0,84 · 10 5
Бронза фосфористая катанная 1,15 · 10 5
Бронза марганцевая катанная 1,1 · 10 5
Бронза алюминиевая литая 1,05 · 10 5
Латунь холоднотянутая (0,91...0,99) · 10 5
Латунь корабельная катанная 1,0 · 10 5
Алюминий катанный 0,69 · 10 5
Проволока алюминиевая тянутая 0,7 · 10 5
Дюралюминий катанный 0,71 · 10 5
Цинк катанный 0,84 · 10 5
Свинец 0,17 · 10 5
Лед 0,1 · 10 5
Стекло 0,56 · 10 5
Гранит 0,49 · 10 5
Известь 0,42 · 10 5
Мрамор 0,56 · 10 5
Песчаник 0,18 · 10 5
Каменная кладка из гранита (0,09...0,1) · 10 5
Каменная кладка из кирпича (0,027...0,030) · 10 5
Бетон (см. таблицу 2)
Древесина вдоль волокон (0,1...0,12) · 10 5
Древесина поперек волокон (0,005...0,01) · 10 5
Каучук 0,00008 · 10 5
Текстолит (0,06...0,1) · 10 5
Гетинакс (0,1...0,17) · 10 5
Бакелит (2...3) · 10 3
Целлулоид (14,3...27,5) · 10 2

Нормативные данные для рассчетов железобетонных конструкций

Таблица 2. Модули упругости бетона (согласно СП 52-101-2003)

Таблица 2.1 Модули упругости бетона согласно СНиП 2.03.01-84*(1996)

Примечания:
1. Над чертой указаны значения в МПа, под чертой - в кгс/см².
2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.
3. Для ячеистого бетона неавтоклавного твердения значения Е b принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.
4. Для напрягающего бетона значения Е b принимают как для тяжелого бетона с умножением на коэффициент
a = 0,56 + 0,006В.

Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)

Таблица 4. Расчетные значения сопротивления бетона сжатию (согласно СП 52-101-2003)

Таблица 4.1 Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)


Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)

Таблица 6. Нормативные сопротивления для арматуры (согласно СП 52-101-2003)


Таблица 6.1 Нормативные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)


Таблица 6.2 Нормативные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)


Таблица 7. Расчетные сопротивления для арматуры (согласно СП 52-101-2003)


Таблица 7.1 Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)


Таблица 7.2 Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)


Нормативные данные для расчетов металлических контрукций

Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990)) листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений


Примечания:
1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).
2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.
3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см²).

Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990))

Примечания:
1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*.
2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице.
3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.

Расчетные сопротивления для стали, используемой для производства профилированных листов здесь не показаны.

Если коротко, то для следующих строительных конструкций рекомендуют следующие марки бетона:

— подбетонка или подготовка основания для монолитной конструкции — В7,5;

— фундаменты — не ниже В15, но в ряде случаев марка по водонепроницаемости должна быть не ниже W6 (бетон В22,5). Также, согласно еще не принятому приложению Д к СП 28.13330.2012, класс бетона для фундаментов должен быть не ниже В30. Я рекомендую использовать бетон с маркой по водонепроницаемости не ниже W6, что позволит обеспечить долговечность конструкции;

— стены, колонны и другие конструкции расположенные на улице — марка по морозостойкости не ниже F150, а для района с расчетной температурой наружного воздуха ниже -40С — F200.

внутренние стены, несущие колонны — по расчету, но не ниже В15, для сильно сжатых не ниже В25.

Возможно я не охвачу все нормативы, где может быть прописаны требования к выбору марки бетона, поэтому прошу в комментариях отписаться если есть неточности.

Основными нормируемыми и контролируемыми показателями качества бетона являются:

— класс по прочности на сжатие B;

— класс по прочности на осевое растяжение B t ;

— марка по морозостойкости F;

— марка по водонепроницаемости W;

— марка по средней плотности D.

B

Класс бетона по прочности на сжатие B соответствует значению кубиковой прочности бетона на сжатие в МПа с обеспеченностью 0,95 (нормативная кубиковая прочность) и принимается в пределах от B 0,5 до B 120.

Это основной параметр бетона, который определяет его прочность на сжатие. Например, класс бетона В15 означает, что после 28 дней при температуре застывания 20°С прочность бетона будет 15 МПа. Однако в расчетах используют другую цифру. Расчетное сопротивление бетона (R b) сжатию можно найти в таблице 5.2 СП 52-101-2003

Таблица 5.2 СП 52-101-2003

Вид сопротивления Расчетные значения сопротивления бетона для предельных состояний первой группы R b и R bt
В10 В15 В20 В25 В30 В35 В40 В45 В50 В55 В60
R b 6,0 8,5 11,5 14,5 17,0 19,5 22,0 25,0 27,5 30,0 33,0
Растяжение осевое R bt 0,56 0,75 0,9 1,05 1,15 1,3 1,4 1,5 1,6 1,7 1,8

Почему прочность замеряют именно через 28 дней? Потому, что бетон набирает прочность всю жизнь, но после 28 дней прирост прочности уже не такой большой. Через одну неделю после заливки прочность бетона может быть 65% от нормативной (зависит от температуры твердения), через 2 недели будет 80%, через 28 дней прочность достигнет 100%, через 100 суток будет 140% от нормативной. При проектировании есть понятие прочности через 28 дней, и оно принимается за 100%.

Также известна классификация по марке бетона M и цифрами от 50 до 1000. Цифра обозначает предел прочности на сжатие в кг/см². Различие в классе бетона B и марке бетона M заключается в методе определения прочности. Для марки бетона это средняя величина силы сжатия при испытаниях после 28 дней выдержки образца, выраженная в кг/см². Данная прочность обеспечивается в 50% случаях. Класс бетона B гарантирует прочность бетона в 95% случаях. Т.е. прочность бетона варьируется и зависит от многих факторов, не всегда можно добиться нужной прочности и бывают отклонения от проектной прочности. Например, марка бетона М100 обеспечивает прочность бетона после 28 дней в 100 кг/см² в 50% случаев. Но для проектирования это как-то слишком мало, поэтому ввели понятие класс бетона. Бетон B15 гарантирует прочность в 15 МПа после 28 дней в 95% случаях.

В проектной документации бетон обозначается только классом B, но в строительной практике марка бетона всё еще применяется.

Определить класс бетона по марке и наоборот можно по следующей таблице:

Класс бетона по прочности на сжатие Средняя прочность бетона данного класса, кгс/см² Ближайшая марка бетона по прочности на сжатие Отклонения ближайшей марки бетона от средней прочности бетона этого класса, %

В3,5

45,84

М50

9,1

В5

65,48

М75

14,5

В7,5

98,23

М100

1,8

В10

130,97

М150

14,5

В12,5

163,71

М150

8,4

В15

196,45

М200

1,8

В20

261,94

М250

4,6

В22,5

294,68

М300

1,8

В25

327,42

М350

6,9

В27,5

360,16

М350

2,8

В30

392,90

М400

1,8

В35

458,39

М450

1,8

В40

523,87

М500

4,6

Класс бетона по прочности на осевое растяжение B t соответствует значению прочности бетона на осевое растяжение в МПа с обеспеченностью 0,95 (нормативная прочность бетона) и принимается в пределах от B t 0,4 до B t 6.

Допускается принимать иное значение обеспеченности прочности бетона на сжатие и осевое растяжение в соответствии с требованиями нормативных документов для отдельных специальных видов сооружений (например, для массивных гидротехнических сооружений).

Марка бетона по морозостойкости F соответствует минимальному числу циклов попеременного замораживания и оттаивания, выдерживаемых образцом при стандартном испытании, и принимается в пределах от F 15 до F 1000.

Марка бетона по водонепроницаемости W соответствует максимальному значению давления воды (МПа · 10 -1), выдерживаемому бетонным образцом при испытании, и принимается в пределах от W 2 до W 20.

Марка по средней плотности D соответствует среднему значению объемной массы бетона в кг/м 3 и принимается в пределах от D 200 до D 5000.

Также встречается маркировка бетона по подвижности (П) или указывается осадка конуса. Чем выше число П, тем бетон более жидкий и с ним легче работать.

Для напрягающих бетонов устанавливают марку по самонапряжению.

Подбор марки бетона по прочности

Минимальный класс бетона для конструкций назначается согласно СП 28.13330.2012 и СП 63.13330.2012.

Для любых железобетонных строительных конструкций класс бетона должен быть не ниже В15 (п.6.1.6 СП 63.12220.2012).

Для предварительно напряженных железобетонных конструкций класс бетона по прочности на сжатие следует принимать в зависимости от вида и класса напрягаемой арматуры, но не ниже В20 (п.6.1.6 СП 63.12220.2012).

Железобетонный ростверк из сборного железобетона должен быть выполнен из бетона не ниже кл. В20 (п. 6.8 СП 50-102-2003)

Класс бетона для конструкций назначают согласно прочностному расчету по технико-экономическим соображениям, например, на нижних этажах здания монолитные колонны имеют большую прочность т.к. нагрузка на них выше, на верхних этажах класс бетона уменьшается, что позволяет использовать колонны одного сечения на всех этажах.

Также есть рекомендации СП 28.13330.2012. Согласно постановлению 1521 от 26.12.2014 приложения А и Д СП 28.13330.2012 не входят в обязательный перечень, т.е. рекомендуются, но рекомендую обратить своё внимание на эти приложения т.к., возможно, скоро они будут обязательными для применения. Прежде всего необходимо сделать классификацию конструкцию по среде эксплуатации согласно таблице А.1 СП 28.13330.2012:

Таблица А.1 — Среды эксплуатации

Индекс Среда эксплуатации Примеры конструкций
  1. Среда без признаков агрессии
ХО Для бетона без арматуры и закладных деталей: все среды, кроме воздействия замораживания — оттаивания, истирания или химической агрессии.Для железобетона: сухая Конструкции внутри помещений с сухим режимом эксплуатации
  1. Коррозия арматуры вследствие карбонизации
ХС1 Сухая и постоянно влажная среда Конструкции помещений в жилых домах, за исключением кухонь, ванных, прачечных.Бетон постоянно под водой
ХС2 Влажная и кратковременно сухая среда Поверхности бетона, длительно смачиваемые водой. Фундаменты
ХС3 Умеренно влажная среда (влажные помещения, влажный климат) Конструкции, на которые часто или постоянно воздействует наружный воздух без увлажнения атмосферными осадками. Конструкции под навесом. Конструкции внутри помещений с высокой влажностью (общественные кухни, ванные, прачечные, крытые бассейны, помещения для скота)
ХС4 Наружные конструкции, подвергающиеся действию дождя
  1. Коррозия вследствие действия хлоридов (кроме морской воды)
В случае, когда бетон, содержащий стальную арматуру или закладные детали, подвергается действию хлоридов, включая соли, применяемые как антиобледенители, агрессивная среда классифицируется по следующим показателям:
XD1 Среда с умеренной влажностью Конструкции, подвергающиеся воздействию аэрозоля солей хлоридов
XD2 Влажный и редко сухой режим эксплуатации Плавательные бассейны. Конструкции, подвергающиеся воздействию промышленных сточных вод, содержащих хлориды
XD3 Переменное увлажнение и высушивание Конструкции мостов, подвергающиеся обрызгиванию растворами противогололедных реагентов. Покрытие дорог. Перекрытия парковок
  1. Коррозия, вызванная действием морской воды
В случае, когда бетон, содержащий стальную арматуру или закладные детали, подвергается действию хлоридов из морской воды или аэрозолей морской воды, агрессивная среда классифицируется по следующим показателям:
XS1 Воздействие аэрозолей, но без прямого контакта с морской водой Береговые сооружения
XS2 Под водой Подводные части морских сооружений
XS3 Зона прилива и отлива, обрызгивания Части морских сооружений в зоне переменного уровня воды
Примечание — Для морской воды с различным содержанием хлоридов требования к бетону указаны в таблице Г.1
  1. Коррозия бетона, вызванная попеременным замораживанием и оттаиванием, в присутствии или без солей противообледенителей
При действии на насыщенный водой бетон переменного замораживания и оттаивания агрессивная среда классифицируется по следующим признакам:
XF1 Умеренное водонасыщение без антиобледенителей Вертикальные поверхности зданий и сооружений при действии дождя и мороза
XF2 Умеренное водонасыщение с антиобледенителями Вертикальные поверхности зданий и сооружений, подвергающиеся обрызгиванию растворами антиобледенителей и замораживанию
XF3 Сильное водонасыщение без антиобледенителей Сооружения при действии дождей и мороза
XF4 Сильное водонасыщение растворами солей антиобледенителей или морской водой Дорожные покрытия, обрабатываемые противогололедными реагентами. Горизонтальные поверхности мостов, ступени наружных лестниц и др. Зона переменного уровня для морских сооружений при действии мороза
  1. Химическая и биологическая агрессия
При действии химических агентов из почвы, подземных вод, коррозионная среда классифицируется по следующим признакам:
ХА1 Незначительное содержание агрессивных агентов — слабая степень агрессивности среды по таблицам В.1 — В.7, Г.2 Конструкции в подземных водах
ХА2 Умеренное содержание агрессивных агентов — средняя степень агрессивности среды по таблицам В.1 — В.7, Г.2 Конструкции, находящиеся в контакте с морской водой. Конструкции в агрессивных грунтах
ХА3 Высокое содержание агрессивных агентов — сильная степень агрессивности среды по таблицам В.1 — В.7, Г.2 Промышленные водоочистные сооружения с химическими агрессивными стоками. Кормушки в животноводстве. Градирни с системами газоочистки
  1. Коррозия бетона вследствие реакции щелочей с кремнеземом заполнителей
В зависимости от влажности среда классифицируется по следующим признакам:
WO Бетон находится в сухой среде Конструкции внутри сухих помещений. Конструкции в наружном воздухе вне действия осадков, поверхностных вод и грунтовой влаги
WF Бетон часто или длительно увлажняется Наружные конструкции, не защищенные от воздействия осадков, поверхностных вод и грунтовой влаги.Конструкции во влажных помещениях, например, бассейнах, прачечных и других помещениях с относительной влажностью преимущественноболее 80 %.Конструкции, часто подвергающиеся действию конденсата, например, трубы, станции теплообменников, фильтровальные камеры,животноводческие помещения.Массивные конструкции, минимальный размер которых превосходит 0,8 м, независимо от доступа влаги
WA Бетон, на который помимо воздействий среды WF действуют часто или длительно щелочи, поступающие извне Конструкции, подвергающиеся воздействию морской воды.Конструкции, на которые воздействуют противогололедные соли без дополнительного динамического воздействия (например, зона обрызгивания).Конструкции промышленных и сельскохозяйственных зданий (например, шламонакопители), подвергающиеся воздействию щелочных солей
WS Бетон с высокими динамическими нагрузками и прямым воздействием щелочей Конструкции, подвергающиеся воздействию противогололедных солей и дополнительно высоким динамическим нагрузкам (например, бетон дорожных покрытий)
Примечание — Агрессивное воздействие должно быть дополнительно изучено в случае:действия химических агентов, не указанных в таблицах Б.2, Б.4, В.3;высокой скорости (более 1 м/с) течения воды, содержащей химические агенты по таблицам В.3, В.4, В.5.

В зависимости от выбранной среды эксплуатации назначаем класс бетона для конструкции по таблице Д.1 СП 28.13330.2012.

Таблица Д.1 — Требования к бетонам в зависимости от классов сред эксплуатации

Требования к бетонам Классы сред эксплуатации
Неагрессивная среда Карбонизация Хлоридная коррозия Замораживание — оттаивание 1) Химическая коррозия
Морская вода Прочие хлоридные воздействия
Индексы сред эксплуатации
ХО ХС1 ХС2 ХС3 ХС4 XS1 XS2 XS3 XD1 XD2 XD3 XF1 XF2 XF3 XF4 ХА1 ХА2 ХА3
Минимальный класс по прочности В 15 25 30 37 37 37 45 45 37 45 45 37 37 37 37 37 37 45
Минимальный расход цемента, кг/м 3 260 280 280 300 300 320 340 300 300 320 300 300 320 340 300 320 360
Минимальное воздухо-содержание, % 4,0 4,0 4,0
Прочие требования Заполнитель с необходимой морозостойкостью Сульфатостойкий цемент 2)
Приведенные в колонках требования назначаются совместно с требованиями, указанными в следующих таблицах Д.2, Ж.5 Г.1, Д.2 Г.1, Д.2 Ж.1 В.1 — В.5, Д.2
1) Для эксплуатации в условиях попеременного замораживания — оттаивания бетон должен быть испытан на морозостойкость. 2) Когда содержание соответствует ХА2 и ХА3, целесообразно применение сульфатостойкого цемента. 3) Значения величин в данной таблице относятся к бетону на цементе класса СЕМ 1 по ГОСТ 30515 и заполнителе с максимальной крупностью 20 — 30 мм.

Если посмотреть на эти требования, то для фундамента нужно принимать бетон минимум В30 (среда XC2). Однако пока это рекомендуемые требования, которые в перспективе станут обязательными (или не станут, кто его знает?)

Подбор марки бетона по водонепроницаемости

Марки бетона по водонепроницаемости подбирается согласно таблицам В.1-В.8 СП 28.13330.2012 в зависимости от степени агрессивности среды. Данные по агрессивности грунтов указываются в инженерно-геологических изысканиях и там же обычно пишут рекомендуемую марку по водонепроницаемости.

Для свай и необходимо применять бетон марки по водонепроницаемости не ниже W6 (п.15.3.25 СП 50-102-2003). Такую марку имеет бетон В22,5, поэтому нужно это учитывать при подборе класса бетона.

Для надземных конструкций, подвергаемых атмосферным воздействиям при расчетной отрицательной температуре наружного воздуха выше минус 40 °С, а также для наружных стен отапливаемых зданий марку бетона по водонепроницаемости не нормируют (п.6.1.9 СП 63.13330.2012).

Подбор марки бетона по морозостойкости

Подбор марки бетона по морозостойкости производится согласно таблицам Ж.1, Ж.2 СП 28.13330.2012 в зависимости от расчётной температуры наружного воздуха.

Таблица Ж.1 — Требования к бетону конструкций, работающих в условиях знакопеременных температур

Таблица Ж.2 — Требования к морозостойкости бетона стеновых конструкций

Условия работы конструкций Минимальная марка бетона по морозостойкости наружных стен отапливаемых зданий из бетонов
Относительная влажность внутреннего воздуха помещения j int , % Расчетная зимняя температура наружного воздуха, °C легкого, ячеистого, поризованного тяжелого и мелкозернистого
j int > 75 Ниже -40 F100 F200
Ниже -20 до -40 включ. F75 F100
Ниже -5 до -20 включ. F50 F70
— 5 и выше F35 F50
60 < j int £ 75 Ниже -40 F75 F100
Ниже -20 до -40 включ. F50 F50
Ниже -5 до -20 включ. F35
— 5 и выше F25
j int £ 60 Ниже -40 F50 F75
Ниже -20 до -40 включ. F35
Ниже -5 до -20 включ. F25
— 5 и выше F15 *

* Для легких бетонов марка по морозостойкости не нормируется.

Примечания

1. При наличии паро- и гидроизоляции конструкций марки бетонов по морозостойкости, указанные в настоящей таблице, могут быть снижены на один уровень.

2. Расчетная зимняя температура наружного воздуха принимается согласно СП 131.13330 как температура наиболее холодной пятидневки.

3. Марка ячеистого бетона по морозостойкости устанавливается по ГОСТ 25485 .

Расчетная зимняя температура наружного воздуха для расчета железобетонных конструкций принимается по средней температуре воздуха наиболее холодной пятидневки с обеспеченностью 0,98 в зависимости от района строительства согласно СП 131.13330.2012.

В грунтах с положительной температурой, ниже уровня промерзания на 0,5 м, морозостойкость не нормируется (СП 8.16 СП 24.13330.2011)

Например, для Москвы температура наиболее холодной пятидневки с обеспеченностью 0,98 равна минус 29 °С. Тогда марка бетона по морозостойкости равна F150 (Характеристика режима — Возможное эпизодическое воздействие температуры ниже 0 °C а) в водонасыщенном состоянии, например, конструкции, находящиеся в грунте или под водой).

Защитный слой бетона

Чтобы арматура не оголилась со временем существуют требования по минимальной толщине слоя бетона для защиты арматуры. Согласно пособию по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры СП 52-101-2003 минимальная толщина защитного слоя определяется по таблице 5.1 Пособия к СП 52-101-2003:

Таблица 5.1 Пособия к СП 52-101-2003

№ п/п Условия эксплуатации конструкций здания Толщина защитного слоя бетона, мм, не менее
1. В закрытых помещениях при нормальной и пониженной влажности 20
2. В закрытых помещениях при повышенной влажности (при отсутствии дополнительных защитных мероприятий) 25
3. На открытом воздухе (при отсутствии дополнительных защитных мероприятий) 30
4. В грунте (при отсутствии дополнительных защитных мероприятий), в фундаментах при наличии бетонной подготовки 40
5. В монолитных фундаментах при отсутствии бетонной подготовки 70

Для сборных железобетонных элементов толщину защитного слоя можно уменьшить на 5 мм от данных таблицы 8.1 СП 52-101-2003 (п.8.3.2).

Для буронабивных свай защитный слой бетона составляет не менее 50 мм (п. 8.16 СП 24.13330.2011), для буронабивных свай фундаментов мостов 100 мм.

Для буронабивных свай, используемых как защитные ограждения, защитный слой бетона принимается 80-100 мм (п. 5.2.12 Методического пособия по устройству ограждений из буронабивных свай).

Также во всех случаях толщина защитного слоя не может быть меньше толщины арматуры.

Защитный слой бетона считается от наружной поверхности до поверхности арматуры (не до оси арматуры).

Защитный слой бетона обычно обеспечивается использованием фиксаторов:



Расчетные значения сопротивления бетона

СП 63.13330.2012 Бетонные и железобетонные конструкции. Основные положения

Расчетные значения сопротивления бетона осевому сжатию R b определяют по формуле 6.1 СП 63.13330.2012:

Расчетные значения сопротивления бетона осевому растяжению R bt определяют по формуле 6.2 СП 63.13330.2012:

Значения коэффициента надежности по бетону при сжатии γ b принимают равными:

для расчета по предельным состояниям первой группы:

1,5 — для ячеистого бетона;

Значения коэффициента надежности по бетону при растяжении γ bt принимают равными:

для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на сжатие:

1,5 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

2,3 — для ячеистого бетона;

для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на растяжение:

1,3 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

для расчета по предельным состояниям второй группы: 1,0.

(п. 6.1.11 СП 63.13330.2012)

В необходимых случаях расчетные значения прочностных характеристик бетона умножают на следующие коэффициенты условий работы γ bt , учитывающие особенности работы бетона в конструкции (характер нагрузки, условия окружающей среды и т.д.):

а) γ b 1 — для бетонных и железобетонных конструкций, вводимый к расчетным значениям сопротивлений R b и R bt и учитывающий влияние длительности действия статической нагрузки:

γ b 1 = 1,0 при непродолжительном (кратковременном) действии нагрузки;

γ b 1 = 0,9 при продолжительном (длительном) действии нагрузки. Для ячеистых и поризованных бетонов γ b 1 = 0,85;

б) γ b 2 — для бетонных конструкций, вводимый к расчетным значениям сопротивления R b и учитывающий характер разрушения таких конструкций, γ b 2 = 0,9;

в) γ b 3 — для бетонных и железобетонных конструкций, бетонируемых в вертикальном положении при высоте слоя бетонирования свыше 1,5 м, вводимый к расчетному значению сопротивления бетона R b , γ b 3 = 0,85;

г) γ b 4 — для ячеистых бетонов, вводимый к расчетному значению сопротивления бетона R b :

γ b 4 = 1,00 — при влажности ячеистого бетона 10 % и менее;

γ b 4 = 0,85 — при влажности ячеистого бетона более 25 %;

по интерполяции — при влажности ячеистого бетона свыше 10 % и менее 25 %.

Влияние попеременного замораживания и оттаивания, а также отрицательных температур, учитывают коэффициентом условий работы бетона γ b 5 £ 1,0. Для надземных конструкций, подвергаемых атмосферным воздействиям окружающей среды при расчетной температуре наружного воздуха в холодный период минус 40 °С и выше, принимают коэффициент γ b 5 = 1,0. В остальных случаях значения коэффициента принимают в зависимости от назначения конструкции и условий окружающей среды согласно специальным указаниям.

(п. 6.1.12 СП 63.13330.2012)

Для свайных фундаментов согласно СП 24.13330.2011 Свайные фундаменты, п. 7.1.9

7.1.9 При расчете набивных, буровых свай и баретт (кроме свай-столбов и буроопускных свай) по прочности материала расчетное сопротивление бетона следует принимать с понижающим коэффициентом условий работы γ cb = 0,85, учитывающим бетонирование в узком пространстве скважин и обсадных труб, и дополнительного понижающего коэффициента γ’ cb , учитывающего влияние способа производства свайных работ:

а) в глинистых грунтах, если возможны бурение скважин и бетонирование их насухо без крепления стенок при положении уровня подземных вод в период строительства ниже пяты свай, γ’ cb = 1,0;

б) в грунтах, бурение скважин и бетонирование в которых производят насухо с применением извлекаемых обсадных труб или полых шнеков, γ’ cb = 0,9;

в) в грунтах, бурение скважин и бетонирование в которых осуществляют при наличии в них воды с применением извлекаемых обсадных труб или полых шнеков, γ’ cb = 0,8;

г) в грунтах, бурение скважин и бетонирование в которых выполняют под глинистым раствором или под избыточным давлением воды (без обсадных труб), γ’ cb = 0,7.

Параметры для расчета железобетонных конструкций:

Параметры для расчета железобетонных конструкций приведены в СП 63.13330.2012:

Таблица 6.7

Вид Бетон Нормативные сопротивления бетона R b,n , R bt,n , МПа, и расчетные сопротивления бетона для предельных состояний второй группы R b,ser и R bt,ser , МПа, при классе бетона по прочности на сжатие
В1,5 В2 В2,5 В3,5 В5 В7,5 В10 В12,5 В15 В20 В25 В30 В35 В40 В45 В50 В55 В60 В70 В80 В90 В100
Сжатие осевое (призменная прочность) R b,n , R b,ser 2,7 3,5 5,5 7,5 9,5 11 15 18,5 22 25,5 29 32 36 39,5 43 50 57 64 71
Легкий 1,9 2,7 3,5 5,5 7,5 9,5 11 15 18,5 22 25,5 29
Ячеистый 1,4 1,9 2,4 3,3 4,6 6,9 9,0 10,5 11,5
Растяжение осевое R bt,n и R bt,ser Тяжелый, мелкозернистый и напрягающий 0,39 0,55 0,70 0,85 1,00 1,10 1,35 1,55 1,75 1,95 2,10 2,25 2,45 2,60 2,75 3,00 3,30 3,60 3,80
Легкий 0,29 0,39 0,55 0,70 0,85 1,00 1,10 1,35 1,55 1,75 1,95 2,10
Ячеистый 0,22 0,26 0,31 0,41 0,55 0,63 0,89 1,00 1,05

Примечания

1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %.

2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений R bt,n , R bt,ser следует принимать с умножением на коэффициент 0,8.

3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений R bt,n , R bt,ser следует принимать как для легкого бетона с умножением на коэффициент 0,7.

R bt,n , R bt,ser следует принимать с умножением на коэффициент 1,2.

Таблица 6.8

Вид Бетон Расчетные сопротивления бетона R b , R bt , МПа, для предельных состояний первой группы при классе бетона по прочности на сжатие
В1,5 В2 В2,5 В3,5 В5 В7,5 В10 В12,5 В15 В20 В25 в30 B35 В40 В45 В50 В55 В60 В70 В80 В90 В100
Сжатие осевое (призменная прочность) Тяжелый, мелкозернистый и напрягающий 2,1 2,8 4,5 6,0 7,5 8,5 11,5 14,5 17,0 19,5 22,0 25,0 27,5 30,0 33,0 37,0 41,0 44,0 47,5
Легкий 1,5 2,1 2,8 4,5 6,0 7,5 8,5 11,5 14,5 17,0 19,5 22,0
Ячеистый 0,95 1,3 1,6 2,2 3,1 4,6 6,0 7,0 7,7
Растяжение осевое Тяжелый, мелкозернистый и напрягающий 0,26 0,37 0,48 0,56 0,66 0,75 0,90 1,05 1,15 1,30 1,40 1,50 1,60 1,70 1,80 1,90 2,10 2,15 2,20
Легкий 0,20 0,26 0,37 0,48 0,56 0,66 0,75 0,90 1,05 1,15 1,30 1,40
Ячеистый 0,09 0,12 0,14 0,18 0,24 0,28 0,39 0,44 0,46

Таблица 6.11

Бетон Значения начального модуля упругости бетона при сжатии и растяжении E b , МПа × 10 -3 , при классе бетона по прочности на сжатие
В1,5 В2 В2,5 В3,5 В5 В7,5 в10 В12,5 B15 B20 B25 в30 В35 В40 В45 В50 В55 В60 В70 В80 В90 В100
Тяжелый 9,5 13,0 16,0 19,0 21,5 24,0 27,5 30,0 32,5 34,5 36,0 37,0 38,0 39,0 39,5 41,0 42,0 42,5 43
Мелкозернистый групп:
А — естественного твердения 7,0 10 13,5 15,5 17,5 19,5 22,0 24,0 26,0 27,5 28,5
Б — автоклавного твердения 16,5 18,0 19,5 21,0 22,0 23,0 23,5 24,0 24,5 25,0
Легкий и порисованный марки по средней плотности:
D800 4,0 4,5 5,0 5,5
D1000 5,0 5,5 6,3 7,2 8,0 8,4
D1200 6,0 6,7 7,6 8,7 9,5 10,0 10,5
D1400 7,0 7,8 8,8 10,0 11,0 11,7 12,5 13,5 14,5 15,5
D1600 9,0 10,0 11,5 12,5 13,2 14,0 15,5 16,5 17,5 18,0
D1800 11,2 13,0 14,0 14,7 15,5 17,0 18,5 19,5 20,5 21,0
D2000 14,5 16,0 17,0 18,0 19,5 21,0 22,0 23,0 23,5
Ячеистый автоклавного твердения марки по средней плотности:
D500 1,4
D600 1,7 1,8 2,1
D700 1,9 2,2 2,5 2,9
D800 2,9 3,4 4,0
D900 3,8 4,5 5,5
D1000 5,0 6,0 7,0
D1100 6,8 7,9 8,3 8,6
D1200 8,4 8,8 9,3

Примечания

1 Для мелкозернистого бетона группы А, подвергнутого тепловой обработке или при атмосферном давлении, значения начальных модулей упругости бетона следует принимать с коэффициентом 0,89.

2 Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3 Для ячеистого бетона неавтоклавного твердения значения Е b принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

4 Для напрягающего бетона значения Е b принимают как для тяжелого бетона с умножением на коэффициент α = 0,56 + 0,006 В.

С этой таблицей нужно быть внимательнее – данные даны не в 10 -3 МПа, а в МПа х 10 -3 , т.е. в ГПа или 1000 МПа. Например, модуль упругости для бетона В25 равен 30 ГПа = 30*1000 МПа. Не знаю зачем составители данной таблицы так намудрили, но новички ловятся на этом.

Обозначение бетона на чертежах

В спецификации бетон маркируется согласно ГОСТ 26633-2012. Например: Бетон В25 F200 W8 означает, что бетон принят по прочности класса B25, по морозостойкости марки 200, по водонепроницаемости W8.

На разрезах и сечениях бетон обозначается штриховкой согласно ГОСТ 2.306-68, но там нет штриховки железобетона. Тем не менее в строительных чертежах применяют штриховку согласно ГОСТ Р 21.1207-97 (стандарт отменен, но тем не менее штриховки используют эти).


Литература:

  1. Пособие к СП 52-101-2003 Пособие по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры (pdf)
Posted in Tagged
Материал Модуль упругости Е , МПа
Чугун белый, серый (1,15...1,60) . 10 5
» ковкий 1,55 . 10 5
Сталь углеродистая (2,0...2,1) . 10 5
» легированная (2,1...2,2) . 10 5
Медь прокатная 1,1 . 10 5
» холоднотянутая 1,3 . 10 3
» литая 0,84 . 10 5
Бронза фосфористая катанная 1,15 . 10 5
Бронза марганцевая катанная 1,1 . 10 5
Бронза алюминиевая литая 1,05 . 10 5
Латунь холоднотянутая (0,91...0,99) . 10 5
Латунь корабельная катанная 1,0 . 10 5
Алюминий катанный 0,69 . 10 5
Проволока алюминиевая тянутая 0,7 . 10 5
Дюралюминий катанный 0,71 . 10 5
Цинк катанный 0,84 . 10 5
Свинец 0,17 . 10 5
Лед 0,1 . 10 5
Стекло 0,56 . 10 5
Гранит 0,49 . 10 5
Известь 0,42 . 10 5
Мрамор 0,56 . 10 5
Песчаник 0,18 . 10 5
Каменная кладка из гранита (0,09...0,1) . 10 5
» из кирпича (0,027...0,030) . 10 5
Бетон (см. таблицу 2)
Древесина вдоль волокон (0,1...0,12) . 10 5
» поперек волокон (0,005...0,01) . 10 5
Каучук 0,00008 . 10 5
Текстолит (0,06...0,1) . 10 5
Гетинакс (0,1...0,17) . 10 5
Бакелит (2...3) . 10 3
Целлулоид (14,3...27,5) . 10 2

Примечание : 1. Для определения модуля упругости в кгс/см 2 табличное значение умножается на 10 (более точно на 10.1937)

2. Значения модулей упругости Е для металлов, древесины , каменной кладки следует уточнять по соответствующим СНиПам.

Нормативные данные для расчетов железобетонных конструкций:

Таблица 2. Начальные модули упругости бетона (согласно СП 52-101-2003)

Таблица 2.1. Начальные модули упругости бетона согласно СНиП 2.03.01-84*(1996)


Примечания : 1. Над чертой указаны значения в МПа, под чертой - в кгс/см 2 .

2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3. Для ячеистого бетона неавтоклавного твердения значения Е b принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

4. Для напрягающего бетона значения Е b принимают как для тяжелого бетона с умножением на коэффициент a = 0,56 + 0,006В.

5. Приведенные в скобках марки бетона не точно соответствуют указанным классам бетона.

Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)

Таблица 4. Расчетные значения сопротивления бетона (согласно СП 52-101-2003)

Таблица 4.1. Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)


Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)


Таблица 7.1. Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)


Таблица 7.2. Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)


Нормативные данные для расчетов металлических конструкций:

Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990))

листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений


Примечания :

1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).

2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.

3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см 2).

Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990))

Примечания : 1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*.
2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице.
3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.

Расчетные сопротивления для стали, используемой для производства профилированных листов, приводятся отдельно .

Список использованной литературы:

1. СНиП 2.03.01-84 "Бетонные и железобетонные конструкции"

2. СП 52-101-2003

3. СНиП II-23-81 (1990) "Стальные конструкции"

4. Александров А.В. Сопротивление материалов. Москва: Высшая школа. - 2003.

5. Фесик С.П. Справочник по сопротивлению материалов. Киев: Будiвельник. - 1982.