Расчёт скорости ударной волны. Скорость распространения ударной волны Ударная волна распространяется в среде

Изучив основные соотношения в скачке уплотнения, вернемся теперь к рассмотрению явления распространения ударной волны в пространстве.

Задаваясь интенсивностью ударной волны, которую в случае движущейся волны лучше всего характеризовать отношением давления устанавливаемого волной, к давлению в газе до прихода

волны, определим прежде всего скорость распространения ударной волны в невозмущенном, в частности, покоящемся газе. Для этого вернемся от стационарного движения газа по отношению к "остановленной" ударной волне обратно к нестационарному явлению распространения ударной волны в неподвижном газе. Вспомним принятые в начале § 29 обозначения:

где О - скорость распространения ударной волны в покоящемся газе, V - абсолютная скорость частиц газа, следующего заударной волной; эту скорость естественно назвать скоростью спутного движения газа за волной.

Воспользуемся первым равенством системы (59), которое предварительно перепишем в виде

и заменим в нем, согласно (61),

тогда, разрешая предыдущее равенство относительно получим искомую формулу скорости распространения ударной волны:

Из этой формулы вытекают два важные следствия:

1°. Скорость распространения ударной волны в невозмущенном газе тем больше, чем интенсивнее волна, т. е. чем больше устанавливаемое ею сжатие

2°. При уменьшении интенсивности ударной волны скорость ее распространения стремится к скорости звука в певозмущенном газе:

Звуковую волну можно, таким образом, рассматривать как ударную волну очень малой интенсивности. Отсюда следует, что ударная волна всегда опережает распространение звука в невозмущенном газе; так, ударная волна, образовавшаяся вследствие взрыва (ее называют обычно взрывной волной), обгоняет звук взрыва.

Перейдем к определению скорости спутного движения Воспользуемся для этого основным соотношением непрерывности (39), которое в силу (61) перепишется так:

Из этого равенства можно определить V в функции от известной уже величины 6 и отношения плотностей до и за ударной волной:

Заменяя отношение согласно формуле Гюгонио (43), выражением

и используя для О равенство (62), получим:

Как легко заключить из полученного выражения скорости спутного движения, в звуковой волне скорость спутного потока ничтожна, что было показано и ранее. С ростом интенсивности ударной волны скорость спутного потока возрастает (при очень больших интенсивностях, примерно, пропорционально корню квадратному из сжатия

Приведем табл. 5 численных значений относительных сжатий и уплотнений газа ударной волной, распространяющейся в неподвижном воздухе при 15° С (Т = 288°) и нормальном атмосферном давлении; в той же таблице помещены соответствующие этим сжатиям значения 0, V и перепада температур.

Таблица 5 (см. скан)

Таблица составлена в предположении об адиабатичности (но не изэнтропичности!) процесса. В действительности, при столь высоких температурах, как указанные в конце таблицы, станет заметным рассеяние энергии, в частности теплоотдача путем лучеиспускания, что в корне изменит всю картину явления. Кроме того, расчеты сделаны для распространения плоской ударной волны; в сферической ударной волне интенсивность будет падать еще в связи с увеличением

поверхности волны при удалении ее от центра образования. Все же в тенденции указанные числа представляют интерес. Обратим внимание, например, на то, что при отсутствии рассеяния энергии и при относительном сжатии скорость распространения ударной волны должна была бы примерно в три раза превзойти скорость звука, при этом за ударной волной возникало бы мощное спутное движение воздуха со скоростью, более чем вдвое превосходящей скорость распространения звука в невозмущенном воздухе. Надо заметить, что даже при сравнительно небольших сжатиях воздуха ударной волной возникает сильный "звуковой ветер". Так, например, легко подсчитать по предыдущим формулам, что ударная волна, несущая относительное сжатие воздуха распространяясь со скоростью могла бы вызвать "звуковой ветер" со скоростью сильный ураган. Отсюда видно, сколь ничтожные сжатия воздуха несут с собой обычные звуковые волны, почти совершенно не смещающие частицы воздуха.

Образованием ударных волн, как движущихся в пространстве, так и "стоячих" скачков уплотнения, сопровождаются многие важные для техники процессы, связанные с большими около и сверхзвуковыми движениями газа или с распространением местных сжатий (повышений давления) в неподвижном газе.

При полете самолета или снаряда даже с дозвуковыми, но близкими к звуковым, скоростями на поверхности крыла и фюзеляжа образуются зоны сверхзвуковых скоростей, причем обратный переход этих сверхзвуковых скоростей к дозвуковым сопровождается возникновением скачков уплотнения. Сверхзвуковой поток, набегающий на лобовую часть тела, движущегося со скоростью, большей скорости звука, будет тормозиться до нулевой относительной скорости в точке разветвления воздушной струи; переход от сверхзвуковой скорости к дозвуковой будет сопровождаться образованием "головной волны" перед лобовой частью летящего тела. Такого же рода скачки образуются в соплах, когда сверхзвуковой поток переходит в дозвуковой, и др.

Отметим громадную интенсивность ударных волн в тяжелых жидкостях, например в воде. Примером может служить явление гидравлического удара, появляющееся в трубопроводе, если мгновенно остановить движущуюся по нему воду, закрыв кран. Возникающие при этом резкие повышения давления могут служить причиной серьезных аварий в водопроводных сетях, в подводящих аппаратах гидравлических турбин и др.

Гидравлический удар представляет по своей природе не что иное как результат возникновения и распространения ударной волны сжатия в воде. Значительная эффективность гидравлического удара объясняется, во-первых, значительной плотностью воды (в 800 раз превышающей плотность воздуха), а также большими скоростями распространения

возмущений (скорость звука в воде примерно в раза больше чем в воздухе).

Теория гидравлического удара аналогична теории ударной волны и газе, но имеет и некоторые специфические особенности, связанные с существенной деформацией стенок трубы при тех громадных давлениях, которые возникают при гидравлическом ударе.

Создателем современной теории гидравлического удара по праву может быть назван наш великий ученый Н. Е. Жуковский, который исследовал распространение ударных волн вдоль труб, наполненных гюдой, и провел замечательные наблюдения гидравлического удара в трубах по заданиям московского водопровода. . Жуковским предложена простая формула повышения давления при гидравлическом ударе:

где потерянная скорость воды, - скорость распространения ударной волны, равная

Здесь плотность и модуль упругости воды, радиус и толщина стенки трубы, модуль упругости материала трубы.

Ударная волна представляет собой область резкого и сильного сжатия среды, распространяющейся во все стороны от центра взрыва

со сверхзвуковой скоростью.

Ударные волны возникают при взрывах практически в любых средах и передают действие взрыва на значительное расстояние.

В зависимости от среды, в которой распространяется ударная волна, различают волны: воздушные (распространяются в воздушной среде); ударные (распространяются в водной среде); сейсмовзрывные

(распространяются в грунте).

2.3. 1. Основные свойства и механизм образования

ударных волн

Процесс образования ударной волны рассмотрим на примере взрыва заряда взрывчатого вещества (ВВ).

При взрыве заряда взрывчатого вещества газообразные продукты взрыва, находящиеся под давлением порядка десятков и даже сотен тысяч атмосфер, расширяются, сжимая окружающую среду (воздух, воду, грунт и т. п.). Развитие процесса взрыва в среде схематически показано на рис. 2.2. После прохождения детонационной волны М1 по заряду ВВ (пунктиром обозначена продетонировавшая часть заря­ да) начинается расширение продуктов детонации.

Зона расширяюшихся продуктов в данный момент времени огра­ ничена кривой СМ1 С 1 , фронт ударной волны, возбужденной взры­ вом, - ВА и А1 В 1 Скорость детонации и связана со скоростями удар­

Волна сжатия, вызывающая заметный разогрев среды, может устойчиво существо­

вать только в форме ударной волны со скач­

кообразным изменением давления во фрон­ те; фронт с плавным нарастанием давления

неустойчив и быстро превращается в скачко­ образный с резким изменением давления.

Вслед за ударной волной идет волна разреже-

Рис npouecca . 2.2. Схе ма развития взры ва в среде

188 Раздел 2. Взры в

ния, которая, двигаясь по сжатому и разогретому воздуху, будет наго­ нять фронт ударной волны.

Схема изменения давления во времени при прохождении удар­ ной волны показана на рис. 2.3.

1 0 l 1 1 е 1 2

Рис. 2.3. Схема изменения давления во времени при прохождении ударной волны:

1 - фаза сжатия; 2 - фаза разрежения (nри взрывах в плотных средах - фаза рас­

тяжения или разгрузки)

В момент прихода волны в определенную точку пространства дав­ ление в прилегающей к ней области скачком увеличивается от р0 (в невозмущенной среде) до р1 (во фронте ударной волны). За фрон­ том давление быстро падает и через время /еж (время действия фазы сжатия), после прихода волны в точку, оказывается меньше р0 - фаза сжатия сменяется фазой разрежения.

Время, в течение которого давление в ударной волне сохраняется выше атмосферного, называется фазой сжатия, а время, в течение ко­ торого давление остается ниже атмосферного, - фазой разрежения.

В момент прихода ударной волны в некоторую точку среда, при­ легающая к этой точке, начинает двигаться со скоростью и в направ­ лении распространения этой волны. Характер изменения и(t) схож с характером изменения p(t). В фазе сжатия среда движется в сторону перемещения ударной волны, в фазе разрежения - в обратном на­ правлении, но с несколько меньшей скоростью.

Фронт ударной волны распространяется со сверхзвуковой скоро­

стью (V> с0), а ее хвостовая часть, где р < -р0, движется со скоростью, близкой к скорости звука с0 в невозмушенной среде, поэтому по мере движения ударная волна растягивается во времени. Давление во фронте ударной волны р 1 , скорость перемешения фронта V и скорость потока среды и не являются постоянными. При удалении удар­ ной волны от очага взрыва она уменьшается, и на больших расстоя-

ниях V приближается к с0, а и - к нулю, т. е. ударная волна вырожда­

ется в акустическую (упругую) волну. Следовательно, ударная волна

имеет как область сжатия, так и разрежения. На практике действие

ударной волны определяется фазой сжатия. Действие фазы разреже­

ния обычно несущественно, поэтому не учитывается, за исключени­

ем некоторых частных эффектов.

2.3.2. Па ра метры ударной волны

Основными параметрами ударной волны являются:

избыточное давление во фронте ударной волны;

скоростной напор ударной волны, действующий на поверхность объекта;

время действия ударной волны;

импульс волны и др.

Избыточное давление во фронте ударной волны характеризуется разностью давления во фронте волны и атмосферного давления.

др = Р1 - Ро,

где р1 - давление во фронте ударной волны;

р 0 - давление в невозмущенной среде (атмосферное давление).

Ударная волна характеризуется скоростью нарастания давления до его максимального значения.

Под максимальным давлением взрыва понимается наибольшее

давление, которое возникает при дефлаграционном сгорании наибо­ лее взрывоопасной газа- , пара-, пылевоздушной смеси в замкнутом сосуде при начал ьном давлении 1 0 1 ,3 кПа. Максимальное давление при взрыве аэросмеси можно рассчитать по формуле:

где р0 - начальное давление, при котором находится аэровзвесь, кПа;

Т 0 - начальная температура исходной смеси, К;

Tr - адиабатическая температура горения стехиометрической

смеси с воздухом при постоянном объеме, К; пк - число молей газообразных продуктов сгорания; f/11 - число молей исходной газовой смеси.

Ударная волна характеризуется пиком. Пик - это участок ударной

волны от момента ударного сжатия до завершения химической реакции,

где формируется самое высокое давление.

Параметром ударной волны является импульс волны. Величина имnульса волны будет различной в зависимости от среды, в которой nротекает взрыв. В общем виде имnульс волны оnисывается законом

где G R - масса взрывчатого (горючего) вещества; - расстояние действия ударной волны;

<р - угол отражения волны.

Расnространение ударной волны зависит от множества факторов, оnределяющих ее действие и силу.

Для оценки действия ударной волны необходимо знать характер нагрузки и nараметры системы, на которую эта нагрузка действует. Характер нагрузки обычно оnисывается функцией изменения давле­ ния ударной волны во времени p(t) в nределах от нуля до времени фазы сжатия tсж· Однако во многих частных случаях действие ударной волны с достаточной точностью оnределяется либо значением избы­

Характер воздействия ударной волны на заданную систему зави­ сит от соотношения между временем действия фазы сжатия tсж и вре-

менем релаксации системы "t, а для уnругих систем - nериодом коле­ баний Т.

Если fсж >> "t, то действие ударной волны оnределяется величи­ ной избыточного давления на ее фронте, так как в этом случае систе­ ма будет деформирована за такой nромежуток времени (nорядка

(1/4- 1/З}t}, в течение которого давление во фронте не усnеет сущест­

венно уnасть. Если, наnротив, tсж << "t, то давление за фронтом волны

снижается за столь малый nромежуток времени, что система nракти­

чески не усnевает деформироваться и дальнейшие деформации ее оn­ ределяются nриобретенным ею количеством движения, а следова­ тельно, удельным имnульсом ударной волны.

Время фазы сжатия зависит от множества факторов: размеров и формы заряда ВВ, среды, в которой nротекает взрыв, nрироды взрыв-

чатого вещества, энергии взрыва и др. Время действия фазы сжатия tсж nри использовании соответствующих форм законов подобия выразит­

ся формулами (2.4).

fсж = г0

r fсж = WF (}

fс ж = VE F3

где г0

Радиус заряда;

G - масса заряда;

Расстояние действия ударной волны;

Е - энергия взрыва;

F1 , F2, F3 - функциональная зависимость.

Огромное значение для оценки параметров ударных волн и их действия имеет закон подобия при взрывах, позволяющий сравнивать характеристики ударных волн, возбужденных взрывами зарядов раз­ личной массы, состоящих из разных ВВ, а также взрывами, вызван­ ными горением взрывоопасных смесей.

Детонационное горение возникает во взрывоопасной среде при прохождении по ней достаточно сильной ударной волны (или волны ударного сжатия). Например, если в замкнутом объеме с горючей га­ зовой смесью взорван точечный заряд взрывчатого вещества, либо произошло возгорание от источника зажигания, то по всей газовой смеси от точки расположения заряда распространится ударная волна, в которой происходит внезапное скачкообразное повышение пара­ метров состояния газовой смеси - давления, температуры, плотно­ сти. Повышение температуры газа при сжатии в ударной волне зна­ чительно больше, чем при аналогичном адиабатическом сжатии. По­ этому абсолютная температура газа, сжатого ударной волной,

прr.торциональна давлению ударной волны.

Следовательно, если ударная волна достаточно сильна, то темпе­

ратура газа под действием ударной волны может повыситься до темпе­ ратуры самовоспламенения. Ударная волна характеризуется скоростным напором. Скоростной

напор образуется в результате торможения о какую-либо преграду

движущихся масс воздуха в ударной волне. Скорость движения рас-

ширяющихся газов, образующих скоростной напор, зависит от степе­ ни сжатия газов и нагревания их ударной волной. Напор вызывает опрокидывание и отбрасывание различных объектов на значительные расстояния.

Ударная волна распространяется в пространстве со сверхзвуковой скоростью. Например, ударная волна при ядерном взрыве проходит первые 1 000 м за 2 с, 2000 м - за 5 с, 3000 м - за 8 с.

Сила ударной волны очень велика и приводит к значительным разрушениям. Если скорость повышения давления относительно не­ велика, то прежде всего будут разрушаться наименее прочные детали, например, окна и двери. В случае же однородной по прочности кон­ струкции здания подъем крыши и разрушение всех стен произойдут одновременно. Избыточное давление ударной волны приводит при взрыве к сильным повреждениям. В табл. 2.3 содержатся данные, ука­ зывающие на степень повреждений.

Таблица 2.3. Повреждения при взрыве от ударной волны

Дамениер в5, ударной Стеnень nовреЖдения

волне к Па

Разрушение стекол в окнах при больших площадях ос-

текпения

Громкий звук (1 43 дБ) ; поврежден ия стекол; 5%-ное

разрушение остекления

Повреждение обшивки домов; разрушение до 1 0 %

оконных стекол

Незначительные повреждения конструкций

90%-ное разрушение остекления, повреждение

оконных рам

Незначит льные повреждения конструкций домов

Частичное разрушение домов до состояния, при кото-

ром проживанис в них невозможно

Разрушение гофрированного асбеста. Гофрированные

стальные ил и алюминиевые паиели ослабля ются в креп-

лени и и подвергаются изгибу. Деревян ные паиели раз-

2 .3 . Характеристи ка ударн ых вол н

Окончание табл. 2.3

Степень повреждения

Разрушаются не укреnленные стены из бетона и шлаковых блоков

Н ижни й nредел серьезных nовреждений конструкций

50%-ное разрушение

Тяжелые машины (весом 1 ,35 т) в nромышленных зданиях nодвергаются небольшим nовреждениям. Стальные конструкции изгибаются

Разрушение бескаркасн ых сооружений, склеnанных из

стальных nанелей. Разрушение масляных хранилищ

Отрыв nокрытий легких nромышленных зданий

Растрескивание деревянных столбов (телеграфных и

пр.). Повреждаются высокие гидравлические nрессы

(весом 1 ,8 т)

Почти nолное разрушение домов

Перевертывание тяжелогруженых ж/д вагонов

Кирnичные стены толщи ной 200-300 мм, не укреnлен-

ньrе, теряют n рочность в результате сдви га или изгиба

Тяжелые грузовые железнодорожные вагоны nолностью

разрушаются

Разрушение более 75 % внутренней кирnичной кладки

Возможно общее разрушение зданий. Тяжел ые (>3 т)

машины и станки nередви гаются и сильно nовреждают-

ся. Очен ь тяжелые (>5 т) машины и станки сохраня ются

Разрушение с образованием кратера

Ударная волна с P s = 1 9 кПа вызывает значительные разрушения

городских построек, а при Ps = 98 кПа наступает полное разрушение

зданий и гибель живых организмов.

На степень разрушения влияют особенности конструкции соору­ жений, а также рельеф местности.

УДАРНАЯ ВОЛНА

Примером возникновения и распространения У. в. может служить газа в трубе поршнем. Если поршень вдвигается в медленно, то по газу со скоростью звука а бежит акустич. (упругая) волна сжатия. Если же поршня не мала по сравнению со скоростью звука, возникает У. в., скорость распространения к-рой по невозмущённому газу больше, чем скорость движения ч-ц газа (т. н. массовая скорость), совпадающая со скоростью поршня. Расстояния между ч-цами в У. в. меньше, чем в невозмущённом газе, вследствие сжатия газа. Если поршень сначала вдвигают в газ с небольшой скоростью и постепенно ускоряют, то У. в: образуется не сразу. Вначале возникает волна сжатия с непрерывными распределениями плотности r и давления р. С течением времени крутизна передней части сжатия нарастает, т. к. возмущения от ускоренно движущегося поршня догоняют её и усиливают, вследствие чего возникает резкий скачок всех гидродинамич. величин, т. е. У. в.

Законы ударного сжатия. При прохождении газа через У. в. его параметры меняются очень резко и в очень узкой области. Толщина фронта У. в. имеет порядок длины свободного пробега молекул, однако при многих теоретич. исследованиях можно пренебречь столь малой толщиной и с большой точностью заменить фронт У. в. поверхностью разрыва, считая, что при прохождении через неё параметры газа изменяются скачком (отсюда назв. « »). Значения параметров газа по обе стороны скачка связаны . соотношениями, вытекающими из законов сохранения массы, импульса и энергии:

r1v1 =r0v0, р1+p1v21 =p0+r0v20, e1+p1/r1 +v21/2=e0+ p0/r0+v20/2, (1)


УДАРНАЯ ВОЛНА – это распространяющийся по среде фронт резкого, почти мгновенного, изменения параметров среды: плотности, давления, температуры, скорости. Ударные волны называют также сильными разрывами или скачками. Причины возникновения ударных волн в газах – полеты со сверхзвуковыми скоростями (звуковой удар), истечения с большими скоростями через сопла, мощные взрывы, электрические разряды, интенсивное горение.

Ударные волны в воде носят название гидравлического удара. С этим явлением пришлось столкнуться при устройстве первых водопроводов: первоначально водопроводные задвижки перекрывали воду слишком быстро. Резкое прекращение тока воды вызывало ударную волну (гидравлический удар), распространявшуюся в трубе водопровода и часто вызывавшую разрыв такой трубы. Для решения этой проблемы в России был привлечен Жуковский, и она была успешно решена (1899). Ударные волны существуют и на поверхности воды: при открывании ворот шлюзов, при «запирании» течения реки (бора).

Ударные волны могут возникать и из первоначально непрерывных течений. Любая достаточно интенсивная волна сжатия порождает ударную волну из-за того, что в этих волнах задние частицы движутся быстрее впереди бегущих (нелинейное укручение фронта волны).

Ударные волны являются частью детонационных волн, волн конденсации (хорошо известным примером этого явления служат шлейфы тумана, остающиеся за самолетом при пролете через участки атмосферы с повышенной влажностью), могут возникать при взаимодействии лазерного излучения с веществом (светодетонационные волны). Сход снежной лавины также может рассматриваться как ударная волна.

В твердых телах ударные волны возникают при высокоскоростном соударении тел, в астрофизических условиях – при взрывах звезд.

Одним из примеров ударной волны является катастрофическое нарастание давки в охваченной паникой толпе, протискивающейся через узкий проход. Родственным явлением приходится затор в потоке транспорта. Ударные волны в газах были обнаружены в середине 19 в. в связи с развитием артиллерии, когда возросшая мощь артиллерийских орудий позволила метать снаряды со сверхзвуковой скоростью.

Введение понятия ударной волны приписывают немецкому ученому Бернхарду Риману (1876).

Условия на фронте ударной волны . При переходе через ударную волну должны выполняться общих законов сохранения массы, импульса и энергии. Соответствующие условия на поверхности волны – непрерывность потока вещества, потока импульса и потока энергии: , , r – плотность, u – скорость, p – давление, h – энтальпия, теплосодержание) газа. Индексом «0» отмечены параметры газа перед ударной волной, индексом «1» – за ней. Эти условия носят название условий Ренкина – Гюгонио, поскольку первыми из опубликованных работ, где были сформулированы эти условия, считаются работы британского инженера Вильяма Ренкина (1870) и французского баллистика Пьера Анри Гюгонио (1889).

Условия Ренкина

– Гюгонио позволяют получить давление и плотность за фронтом ударной волны в зависимости от начальных данных (интенсивности ударной волны и давления и плотности перед ней): , h – энтальпия газа (функция r и p ). Эта зависимость носит название адиабаты Гюгонио, или ударной адиабаты (рис. 1).

Фиксируя на адиабате точку, соответствующую начальному состоянию перед ударной волной, получаем все возможные состояния за волной заданной интенсивности. Состояниям за скачками сжатия отвечают точки адиабаты, расположенные левее выбранной начальной точки, за скачками разрежения – правее.

Анализ адиабаты Гюгонио показывает, что давление, температура и скорость газа после прохождения скачка сжатия неограниченно возрастают при увеличении интенсивности скачка. В это же время плотность возрастает лишь в конечное число раз, сколь бы ни была велика интенсивность скачка. Количественно увеличение плотности зависит от молекулярных свойств среды, для воздуха максимальный рост 6 раз. При уменьшении амплитуды УВ она вырождается в слабый (звуковой) сигнал.

Из условий Ренкина – Гюгонио также можно получить уравнение прямой в плоскости , p

, называемой прямой Рэлея – Михельсона. Угол наклона прямой определяется значением скорости газа перед ударной волной u 0 , сечение адиабаты Гюгонио этой прямой дает параметры газа за фронтом ударной волны. Михельсон (в России) ввел это уравнение при исследовании воспламенения гремучих газовых смесей в 1890, работы британца лорда Рэлея по теории ударных волн относятся к 1910. Скачки разрежения . В воздухе наблюдаются только скачки уплотнения. В этом случае по отношению к среде перед ее фронтом ударной волны движется со скоростью, превышающей скорость звука в этой среде, по среде за ее фронтом волна движется с дозвуковой скоростью. Звуковые волны могут нагнать ударную волну сзади, сама же волна надвигается бесшумно. Привлечение законов термодинамики позволило теоретически обосновать это свойство ударных волн для сред с обычными термодинамическими свойствами (теорема Цемплена). Однако, в средах со специальными термодинамическими свойствами скачки разрежения возможны: известны скачки такого рода в средах с фазовыми переходами, например, пар – жидкость. Структура ударной волны . Типичная ширина ударной волны в воздухе – 10 –4 мм (порядка нескольких длин свободного пробега молекул). Малая толщина такой волны дает возможность во многих задачах считать ее поверхностью разрыва. Но в некоторых случаях имеет значение структура ударной волны. Такая задача представляет и теоретический интерес. Для слабых ударных волн хорошее согласие эксперимента и теории дает модель, учитывающая вязкость и теплопроводность среды. Для ударных волн достаточно большой интенсивности структура должна учитывать (последовательно) стадии установления термодинамического равновесия поступательных, вращательных, для молекулярных газов еще и колебательных степеней свободы, в определенных условиях – диссоциацию и рекомбинацию молекул, химические реакции, процессы с участием электронов (ионизацию, электронное возбуждение). Контактные разрывы . Ударные волны следует отличать от контактных разрывов, также являющихся поверхностями раздела сред с различными плотностями, температурами и, может быть, скоростями. Но, в отличие от ударных волн, через контактный разрыв нет протекания вещества и давление с обеих его сторон одинаково. Контактные разрывы называют также тангенциальными. Распад произвольного разрыва . Поверхность произвольного разрыва, разделяющая две области среды с заданными давлением, плотностью, скоростью, в последующие моменты времени в общем случае перестает существовать (распадается). В результате такого распада может возникнуть две, одна или ни одной ударной волны, а также волны разрежения (являющиеся непрерывными) и контактный разрыв, что может быть рассчитано по начальным данным. Решение этой задачи впервые было сообщено Н.Е.Кочиным (доклад 1924 на первом международном конгрессе по прикладной механике в г. Дельфте (Нидерланды), опубликовано в 1926).

Легко представить практические случаи, которые приводят к задачам такого рода, например, разрыв диафрагмы, разделяющей газы различного давления и т.д. Решение такой задачи актуально для расчета работы ударной трубы.

Ударная труба . Простейшая ударная труба состоит из камер высокого и низкого давления, разделенных диафрагмой (рис. 2). После разрыва диафрагмы в камеру низкого давления устремляется толкающий газ из камеры высокого давления, формируя волну сжатия, которая, быстро увеличивая свою крутизну, образует ударную волну. За ударной волной в камеру низкого давления движется контактный разрыв. Одновременно в камеру высокого давления распространяется волна разрежения.

Первые ударные трубы появились в конце

19 в., с тех пор развитие техники ударных труб позволило превратить ударные волны в самостоятельный инструмент для исследований. В ударной трубе можно получить газ, однородно нагретый до 10 000 ° К и выше. Такие возможности широко используются при изучении многих химических реакций, различных физических процессов. В астрофизических исследованиях основными данными являются спектры звезд. Точность интерпретации этих спектров определяется результатами сравнения со спектрами, полученными на ударных трубах.

С конца 1920-х стала развиваться сверхзвуковая аэродинамика. Первая сверхзвуковая аэродинамическая труба в США (в Национальном консультативном комитете по аэронавтике,

NACA ) была создана к 1927, в СССР – в 1931 – 1933 (в Центральном аэрогидродинамическом институте), это открыло новые возможности экспериментального исследования ударных волн. Сверхзвуковое течение качественно отличается от дозвукового, в первую очередь, наличием ударных волн. Возникновение ударных волн приводит к значительному повышению сопротивления движущихся тел (столь значительному, что возник термин – волновой кризис), а также к изменению действующих на эти тела тепловых нагрузок. Вблизи ударных волн эти нагрузки очень велики и, если не предприняты соответствующие меры защиты, может произойти прогорание корпуса летательного аппарата и его разрушение. Крайне важная проблема в аэродинамике – предотвращение бафтинга (появления нестационарных ударных волн у поверхности летательного аппарата). При бафтинге действие динамических и тепловых нагрузок становится переменным по времени и месту приложения, противостоять таким нагрузкам намного сложнее. Косые и прямые ударные волны . В поле течения ударная волна может быть перпендикулярной невозмущенному течению (прямая ударная волна) или составлять с невозмущенным течением некоторый угол (косая ударная волна). Прямые ударные волны обычно создаются в специальных экспериментальных устройствах – ударных трубах. Косые ударные волны возникают, например, при сверхзвуковом обтекании тел, при истечении газа из сверхзвуковых сопел и т.п.

Есть еще одна классификация ударных волн. Примыкающие к твердой поверхности волны носят название присоединенных, не имеющие точек соприкосновения –

отошедших. Отошедшие ударные волны возникают при сверхзвуковом обтекании затупленных тел (например, сферы), присоединенные волны имеют место в случае остроконечных тел (клина, конуса); такие волны не столько тормозят течение, сколько резко разворачивают его, так что и за ударной волной течение остается сверхзвуковым.

В ряде случаев газодинамическая теория допускает оба случая течения за фронтом присоединенной волны и сверхзвуковое (в этом случае ударная волна называется слабой), и дозвуковое течение (сильная ударная волна).

Экспериментально наблюдаются только такие ударные волны.

Регулярное и маховское отражение волн . В зависимости от угла падения ударной волны на препятствие волна может отражаться непосредственно на поверхности препятствия или на некотором расстоянии от него. Во втором случае отражение называется трехволновым, поскольку в этом случае возникает третья ударная волна, соединяющая падающую и отраженную волны с поверхностью препятствия.

Впервые зафиксированное австрийским ученым Эрнстом Махом в 1878, трехволновое отражение получило также название маховского, для отличия от двухфронтового (или регулярного) отражения.

Выполненный Махом эксперимент, позволивший обнаружить трехволновой режим отражения, заключался в следующем (рис. 5): в двух точках, расположенных на некотором расстоянии друг от друга, одновременно проскакивали две искры, порождавшие две сферических ударных волны.

Распространяясь над поверхностью, зачерненной сажей, эти волны оставляли отчетливый след точек их пересечения, начинающийся посередине между точками инициализации волн, а затем идущий по срединному перпендикуляру отрезка, соединяющего эти точки инициализации. Далее отрезок на концах разделялся на две симметрично расходящиеся линии. Полученная картина соответствует тому, что на ранней стадии взаимодействия ударные волны отражаются друг от друга так, как будто происходит отражение в регулярном режиме от воображаемой плоскости, расположенной

посередине между точками инициализации волн. Затем образуется скачок Маха, соединяющий соответствующие точки кривых, приведенных на рис. 3 . Поскольку на зачерненной поверхности остаются лишь траектории точек пересечения волн, Мах продемонстрировал впечатляющую проницательность, сумев расшифровать смысл полученных следов.

Задача о сильном взрыве . К 1945 было создано мощное оружие разрушения – атомная бомба. Оценка последствий ядерного взрыва во многом связана с расчетом воздействия образовавшейся в результате взрыва ударной волны. Такая задача, называемая задачей о сильном взрыве, впервые была решена Л.И.Седовым в СССР (опубликовано в 1946), получившим точное аналитическое решение поставленной задачи (в виде конечных формул). В 1950 опубликовал свое исследование этой же задачи (с использованием приближенных численных методов) Дж. Тейлор (США). Сходящаяся ударная волна . Впервые задача о фокусировке ударной волны была сформулирована и решена Г.Гудерлеем в Германии (1942) и независимо Л.Д.Ландау и К.П.Станюковичем в СССР (опубликовано в 1955). По мере приближения волны к центру фокусировки происходит концентрация энергии и ударная волна усиливается. В моменты, близкие к фокусировке, волна выходит на некоторый предельный (называемый автомодельным) режим, когда предшествующие условия создания и распространения ударной волны не важны. Сходящиеся ударные волны позволяют получать гигантские давления и температуры в точке фокусировки, в настоящее время изучение таких волн – одно из перспективных направлений создания управляемого термоядерного синтеза. Устойчивость ударной волны . Если условия течения таковы, что его малые возмущения имеют тенденцию к росту, то со временем рост этих возмущений может привести к изменению режима течения или даже к полному его разрушению. Специальные исследования устойчивости УВ в среде с общими свойствами впервые проведены в СССР (С.П.Дьяков, 1954, и В.М.Конторович, 1957 – уточнение результатов Дьякова). Были определены области устойчивости (затухание возмущений) и неустойчивости (рост возмущений), нейтральной устойчивости (ударная волна не реагирует на возмущения), а также обнаружена область спонтанного излучения звука поверхностью ударной волны. Простые расчеты, основанные на полученных результатах, показали, что в воздухе ударная волна абсолютно устойчива. Вместе с тем, неустойчивость проявляется, например, у детонационных волн, что приводит к особенностям распространения волн такого рода: галопирующая и спиновая детонация, ячеистая структура детонационных волн.

Тенденция даже слабых волн сжатия к опрокидыванию приводит к тому, что звуковые волны переходят в слабые скачки и более уже не распространяются со звуковой скоростью – скорость слабого скачка равна полусумме скоростей звука в среде до скачка и после него. В этом сложность экспериментального определения точной скорости звука. Теория дает следующие результаты – в воздухе (при нормальных условиях) 332 м/с, в воде (при 15

° С) 1490 м/с. Число Маха . Отношение скорости течения к скорости звука – важная характеристика течения и носит название числа Маха: , u – скорость газа, a – скорость звука. При сверхзвуковом течении число Маха больше единицы, при дозвуковом – меньше единицы, при течении со звуковой скоростью – равно единице.

Предложил название «число Маха» швейцарский ученый Якоб Аккерет в знак признания заслуг Э.Маха в области исследования сверхзвуковых течений.

Угол Маха . Для источника слабых возмущений, обтекаемого сверхзвуковым потоком, наблюдается интересное явление: четко выраженные границы поля возмущений – линии Маха (рис. 6). При этом синус образованного линией Маха и направлением основного течения угла есть обратное число Маха: .

Этого и следовало ожидать, так как скорость распространения слабых возмущений поперек направления набегающего потока есть скорость звука. Чем больше скорость набегающего потока, тем уже делается угол Маха. Взаимодействие ударных волн с пограничным слоем . В пограничном слое, возникающем вблизи ограничивающих поток стенок, происходит торможение потока до нулевых скоростей на стенке (условие «прилипания»). Фронт ударной волны, взаимодействующей с пограничным слоем, претерпевает изменения: образуется, так называемый, l - образный скачок (лямбда-образный скачок, по сходству конфигурации такого скачка с греческой буквой лямбда, рис. 7).

При течении в канале с развитыми пограничными слоями у стенок прямой скачок заменяется Х -образным скачком, составленным двумя l - образными скачками (обычным и перевернутым). За фронтом такого скачка происходит нарастание толщины пограничного слоя, пограничный слой турбулизуется, могут образовываться другие Х -образные скачки и, в конце концов, может возникнуть ситуация, когда падение скорости потока от сверхзвуковой до дозвуковой происходит в сложной системе скачков и неодномерного течения – псевдоскачке. Теория мелкой воды . Сверхзвуковое течение, как оказалось, аналогично течению воды (или другой несжимаемой жидкости) в открытом водоеме, глубина которого достаточно мала («мелкая» вода) и на жидкость действует сила тяжести. Формально аналогия проявляется в том, что уравнения, описывающие соответствующие движения и газа, и воды, оказываются одинаковыми. Используя это свойство можно совершенно ясно наблюдать явления, происходящие в сверхзвуковом потоке. Например, в обычном быстротекущем ручейке отчетливо видны аналоги отошедших и присоединенных ударных волн, картины процесса возникновения ударной волны при обтекании криволинейной стенки, пересечения и отражения ударных волн, распространения возмущений от точечного источника – линий Маха, картины истечения сверхзвуковых струй в область покоящегося газа, Х -образных скачков и т.п. Впервые обратившим внимание на такую аналогию считается Д.Рябушинский (Франция, 1932). Андрей Богданов ЛИТЕРАТУРА Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений . М., «Наука», 1966
Ландау Л.Д., Лифшиц Е.М. Гидродинамика . М., «Наука» , 1986

УДАРНАЯ ВОЛНА - движущаяся по веществу поверхность разрыва непрерывности скорости течения, давления, и др. величин. У. в. возникают при взрывах, детонации, при сверхзвуковых движениях тел (см. Сверхзвуковое течение ), при мощных электрич. разрядах и т. д. Напр., при воздушном взрыве взрывчатых веществ (BB) образуются высоконагретые продукты, находящиеся под большим давлением. Продукты взрыва под действием давления расширяются, приводя в движение и сжимая сначала ближайшие, а затем всё более далёкие слои воздуха. Поверхность, к-рая отделяет сжатый воздух от невозмущённого, представляет собой У. в.

Простейший пример возникновения и распространения У. в.- сжатие газа в трубе поршнем. Если первоначально покоившийся поршень мгновенно приходит в движение с пост. скоростью и , то сразу же непосредственно перед ним возникает У. в. Скорость её распространения D по невозмущённому газу постоянна и больше и . Поэтому расстояние между поршнем и У. в. увеличивается пропорц. времени движения. Скорость газа за У. в. совпадает со скоростью поршня (рис. 1). Если поршень разгоняется до скорости и постепенно, то У. в. образуется не сразу. Вначале возникает волна сжатия с непрерывным распределением плотности и давления. С течением времени крутизна волны сжатия нарастает, т. к. возмущения от ускоряемого поршня догоняют её и усиливают, приводя в итоге к разрыву непрерывности всех гидродинамич. величин и к образованию У. в. (см. базовая динамика) .

Рис. 1. Распределения плотности r в последовательные моменты времени t = 0, t 1 , t 2 в ударной волне, возбужда емой поршнем, движущимся с постоянной скоростью и (D -скорость ударной волны; D>u) .

Существуют п р я м ы е У. в., в к-рые вещество втекает по нормали к поверхности, и к о с ы е У. в. Последние возникают, напр., при сверхзвуковом движении тел - ракет, спускаемых космич. аппаратов, снарядов и др., когда перед телом движется У. в. Геометрия У. в. зависит от формы тела и от др. параметров. Поэтому в системе координат, где У. в. покоится, газ втекает в каждый элемент её поверхности под своим углом. Если этот угол не прямой, то элемент поверхности представляет собой косую У. в. На косой У. в. претерпевает разрыв нормальная составляющая скорости вещества, но тангенциальная составляющая непрерывна. Следовательно, на косой У. в. линии тока преломляются (о косых У. в. см. Уплотнения скачок ).Путём перехода к новой системе координат, движущейся параллельно поверхности разрыва, косую У. в. всегда можно свести к прямой. Поэтому первостепенный интерес представляют прямые У. в., и далее речь идёт только о них.

Законы ударного сжатия . Состояния вещества по обе стороны У. в.: давление р , плотность r, скорость течения относительно У. в. u и уд. внутр. энергия e связаны т. н. с о о тн о ш е н и я м и Р е н к и н а - Г ю г о н ь о:


к-рые выражают законы сохранения массы, импульса и энергии. Индексы 1 и 2 относятся соответственно к величинам перед У. в. и за ней. Кроме того, величины Е, р исвязаны уравнением состояния . Скорость распространения У. в. по невозмущённому веществу равна Т. о., при заданных параметрах вещества перед волной Р 1 ишесть величин:связаны пятью ур-ниями, т. е. У. в. при заданных р 1 и r 1 характеризуется всего одним независимым параметром, напр. D или р 2 , через к-рый могут быть выражены все остальные величины.

Интенсивность У. в. обычно характеризуют относительным скачком давления или Маха числом где a 1 - в веществе перед У. в. Для У. в. малой и большой интенсивности соответственно Если

Из системы (1) получаются следующие выражения дляии для скорости течения и относительно вещества перед У. в. (скорость газа в лаб. системе координат на рис. 1):


(где-уд. объём), а также соотношение

Рис. 8. Распределения относительной плотности ионов n = N/N 0 , степени ионизации a, безразмерных электрон ной и ионной температур q e = kT e /M A D 2 , q i =kT i /M A D 2 (M А - масса атома) в ударной волне в воздухе при D = 58 км/с; плотность атомов перед ударной волной r 1 =3,5 . 10 15 см -3 .

Измерение яркости У. в. позволяет судить о темп-ре T 2 . При T 2 10000 К прогретый слой воздуха частично экранирует видимое излучение газа, идущее из-за У. в., к-рое в холодном воздухе распространялось бы практически без поглощения. Эффект экранировки не позволяет регистрировать очень высокие значения T 2 . В воздухе нормальной плотности яркостная темп-pa никогда не превышает 50000 К, сколь бы велика не была темп-pa T 2 .

Экспериментальные (в осн. в опытах с ударными трубами) и теоретич. исследования излучения У. в. имеют большое практич. значение в связи с проблемами защиты сверхзвуковых летательных аппаратов от радиац. перегрева, создания мощных импульсных источников эл--магн. излучения и др.

Магнитогидродинамические У. в . распространяются в электропроводящем (ионизованном) газе в присутствии внеш. магн. поля. Их теория строится на основе ур-ний магнитной гидродинамики . Соотношения типа (1) с учётом магн. сил дополняются условиями, к-рым подчиняются электрич. и магн. поля на границе двух сред. Магн. эффекты проявляются тем сильнее, чем больше отношение магн. давления H 2 / 8p к давлению газа, где H -напряжённость магн. поля. Благодаря дополнит. параметрам и переменным, характеризующим величину и направление магн. поля по обе стороны разрыва, магнитогидродинамич. У. в. отличаются большим разнообразием свойств по сравнению с обычными У. в.

Бесстолкновительные У. в . В чрезвычайно разреженной плазме (лабораторной, космической), где частицы практически не сталкиваются между собой, также возможны У. в. При этом ширина У. в. оказывается гораздо меньше длин пробега частиц. Механизм диссипации, приводящей к превращению части кинетич. энергии направленного движения невозмущённого газа (в системе координат, движущейся вместе с У. в.) в энергию теплового движения, связан с коллективными взаимодействиями в плазме и возбуждением плазменных колебаний. В присутствии магн. поля в бесстолкновительных ударных волнах существенны также эффекты закручивания ионов и индуцирования электрич. полей при вытеснении магн. поля движущейся плазмой. Масштабом ширины бесстолкновительных У. в. служит величина с/ w р , где с - скорость света, w p = =(4 pе 2 п е /т ) 1/2 - плазменная частота.

У. в. в газовзвесях . При распространении У. в. по газу с малой объёмной концентрацией пыли в СУ ускоряется, сжимается и нагревается только газовая компонента, т. к. макроскопич. частицы пыли очень редко сталкиваются между собой, а при взаимодействии с газом их скорость и темп-pa изменяются сравнительно медленно, и за СУ в релаксац. зоне происходит постепенное выравнивание скоростей течения и темп-р компонент. При этом относительная массовая концентрация пыли проходит через максимум, т. к. в СУ она была понижена, а в среднем по всему объёму должна быть такой же, как перед У. в. Часто пыль бывает горючей (в угольных шахтах, на мельницах, элеваторах и т. д.). Изучение условий возгорания пыли в У. в. с возможным переходом горения в детонацию - одна из важных научных и прикладных проблем.

У. в. в конденсированных средах . В конденсированных средах (твёрдых телах и жидкостях) в У. в., получаемых, в лаб. условиях, достижим чрезвычайно широкий диапазон давлений. При детонации конденсированных BB возникают и затем переходят в контактирующее с BB исследуемое вещество - твёрдое тело или жидкость - У. в. с давлением до неск. сотен кбар. С помощью кумулятивных зарядов достигаются давления порядка мегабар. Для получения У. в. очень большой интенсивности используются также спец. газовые и др. пушки, к-рыми разгоняются снаряды- пластины, ударяющие затем по преграде из исследуемого вещества. Благодаря разработанным в 1940-50-х гг. методам получения и диагностики У. в. стали могучим и во многом незаменимым средством эксперим. исследования физ--хим. и др. свойств веществ в экстремальных условиях. Особенно широко У. в. используются для определения ур-ний состояния твёрдых тел и жидкостей при высоких давлениях и темп-pax, не достижимых в статич. экспериментах. Измерив две скорости-D и и , можно вычислить p 2 и u 2 по ф-лам

к-рые следуют из (2), и найти затем e 2 из (3). (Скорость и измеряется эл--магн. методом или т. н. методом откола- путём измерения скорости откалывающейся пластины, образующейся при выходе У. в. на свободную поверхность исследуемого образца.) Произведя измерения и расчёты при разл. интенсивностях У. в., находят зависимость р 2 и e 2 от u 2 на УA. Иногда вместо или дополнительно к скорости и измеряют давление (пьезодатчиком), плотность (рентген) или темп-ру (в прозрачных веществах). (Применительно к конденсир. средам такие измерения менее универсальны и обычно технически более сложны.) В табл. 2 приведены данные для УA свинца:

, .

Табл. 2.


* Значения T 2 вычислены по ур-нию состояния .

УА жидкостей и (с точностью до сравнительно малых отклонений, связанных с изменением характера деформации при переходе через предел упругости) твёрдых тел при малых степенях сжатия, , мало отличаются от изоэнтропы и обычно хорошо аппроксимируются ф-лой


где А и n -параметры, определяемые при аппроксимации. Напр., для воды А 3000 атм, n 7-8, для металлов n 4, для железа, меди и дюралюминия значения А соответственно равны 500, 250 и 200 кбар. Более информативные данные об ур-ниях состояния получаются в тех случаях, когда для одного и того же вещества удаётся измерить не одну, а две или неск. УА. Для этого нужно изменять параметры нач. состояния вещества. Это достигается: а) путём отражения У. в. от жёсткой преграды. Отражённая У. в. распространяется по веществу, сжатому и нагретому в падающей У. в.; б) путём спец. приготовления вещества в сильно пористом состоянии. Напр., естественным пористым состоянием воды или льда является рыхлый снег. При ударноволновом сжатии до одного и того же уд. объёма пористое вещество всегда нагревается сильнее и давление в нём обычно больше. Поскольку ур-ние состояния определяет связь между e, p и V на плоскости р, V , а не только на отд. линиях, таким эмпирич. способом получить ур-ние состояния нельзя. Но можно найти или существенно уточнить"парамстры аналитич. ур-ния состояния, полученного к--л. др. приближённым способом. Это особенно важно, поскольку теория ур-ний состояния кон-денсир. сред базируется на весьма приближённых моделях и её возможности количественных предсказаний ограниче-ны. Таким полуэмпирич. путём найдены ур-ния состояния MH. элементов и соединений - металлов, сплавов, минералов, горных пород, полимеров, воды и др. жидкостей. Данные об ур-нии состояния элементов, минералов и горных пород, полученные в опытах с У. в., нашли широкое применение в науке о Земле и др. планетах Солнечной системы и позволили перейти в изучении внутр. строения планет и их спутников на качественно новую ступень.

Ширина СУ в У. в. большой интенсивности в конденсир. средах примерно в 1000 раз меньше, чем в газах нормальной плотности. Столь же сильно сокращается зона коле-бат. релаксации в молекулярных жидкостях и кристаллах при одинаковой темп-ре T 2 . Плавление происходит настолько быстро, что в структуре У. в. очень редко удаётся наблюдать твёрдое тело в метастабильном, перегретом состоянии. Скорость полиморфных превращений изменяется в чрезвычайно широких пределах в зависимости от механизма перестройки кристаллич. решётки и от интенсивности У. в. Если новая кристаллич. модификация может быть получена путём упорядоченного малого смещения атомов, обусловленного объёмной и сдвиговой деформацией исходной решётки (механизм т. н. мартенситного типа), то после нек-рого пересжатия (относительно термо-динамич. границы фаз) превращение идёт очень быстро - за времена порядка 10 -8 с или менее. Необходимая степень пересжатия зависит от кол-ва и распределения дефектов исходной решётки (начальных и возникающих в процессе ударноволнового сжатия) и от концентрации новой фазы. Поэтому диапазон давлений, в к-ром сосуществуют обе кристаллич. модификации, обычно велик по сравнению с термодинамически равновесным. Быстрая перестройка решётки наблюдается, напр., в железе и галогени-дах калия. Если для построения новой кристаллич. решётки нужны сложные перестановки атомов, осуществимые путём термодиффузии с преодолением огромных активац. барьеров от неск. эВ до десятков эВ, новая кристаллич. модификация либо не образуется вовсе (вплоть до таких интенсивностей У. в., при к-рых область её термодинамич. устойчивости заканчивается и образуется др. кристаллич. фаза более высокого давления или вещество плавится), либо образование новой кристаллич. модификации происходит путём термодиффузии в местах сильного неоднородного разогрева исходной решётки при пластич. течении (т. н. гетерогенный механизм фазового перехода). При этом остальная масса вещества находится в метастабильном состоянии. Напр., при распространении У. в. по кварциту не наблюдается образования более плотной фазы высокого давления - коэсита, а переход в ещё более плотную модификацию - стишовит (или стишовитоподобную аморфную фазу) продолжается вплоть до давлений ~400-450 кбар, тогда как в термодинамич. равновесных условиях образование стишовита в У. в. начиналось и заканчивалось бы в относительно узком интервале давлений в окрестности точки с давлением ~ 100 кбар. Не претерпевший фазового превращения кварцит теряет устойчивость и аморфизуется при давлениях 230-300 кбар.

Образовавшиеся в У. в. кристаллич. и аморфные структуры нередко сохраняются сколь угодно долго в метаста-бильных состояниях после снятия давления. Исходное вещество тоже может быть в метастабильном состоянии. Такое многообразие возможностей используется для получения в У. в. известных и новых модификаций веществ с заданными, часто уникальными физико-хим. и механич. свойствами, напр. техн. алмаза и высокотвёрдой модификации нитрида бора -боразона. Уникальность свойств ме-тастабильных веществ, получаемых в У. в., обусловлена тем, что воздействие У. в. на конденсир. вещество не эквивалентно медленному сжатию и нагреву. Важна кинетика процессов в У. в. и при последующей разгрузке.

У. в. используются в наукоёмких технол. процессах упрочнения машиностроительных деталей, резки и сварки металлов, прессования порошков и др.

Лит.: 1) Ландау Л. Д., Лифшиц E. M., Гидродинамика, 4 изд., M., 1988; 2) Зельдович Я. Б., Райзер Ю. П., Физика ударных волн и высокотемпературных гидродинамических явлений, 2 изд., M., 1966; 3) Кузнецов H. M., Термодинамические функции и ударные адиабаты воздуха при высоких температурах, M., 1965; 4) Ступоченко E. В., Лосев С. А., Осипов А. И., Релаксационные процессы в ударных волнах, M., 1965; 5) Be-ликовичА. Л., Либерман M. А., Физика ударных волн в газах и плазме, M., 1987; 6) Арцимович Л. А., Сагдеев P. 3., Физика плазмы для физиков, M, 1979; 7) Ландау Л. Д., Лифшиц E. M., Электродинамика сплошных сред, 2 изд., M., 1982; 8) Кузнецов H. M., Устойчивость ударных волн, "УФН", 1989, т. 159, в. 3, с. 493; 9) Альтшулер Л. В., Применение ударных волн в физике высоких давлений, "УФН", 1965, т. 85, в. 2, с. 197; 10) Динамические исследования твердых тел при высоких давлениях, Сб., пер. с англ., M., 1965; 11) Аврорин E. H. [и др.], Мощные ударные волны и экстремальные состояния вещества, "УФН", 1993, т. 163, № 5, с. 1.

H. M. Кузнецов, Ю. П. Райзер .