В уравнении гармонического колебания величина, стоящая под знаком косинуса, называется. Уравнение гармонических колебаний и его значение в исследовании природы колебательных процессов Уравнение гармоники

Колебания и волны

А. амплитудой

В. циклической частотой

С. начальной фазой

Начальная фаза гармонических колебаний материальной точки определяет

А. амплитуду колебаний

В. отклонение точки от положения равновесия в начальный момент времени

С. период и частоту колебаний

D. максимальную скорость при прохождении точкой положения равновесия

E. полный запас механической энергии точки

3 Для гармонического колебания, изображенного на рисунке, частота колебаний равна…

Тело совершает гармонические колебания с круговой частотой 10 с-1. Если тело при прохождении им положения равновесия имеет скорость 0,2 м/с, то амплитуда колебаний тела равна

5. Какое из ниже приведенных высказываний является верным:

А. При гармонических колебаниях возвращающая сила

В. Прямо пропорциональна смещению.

С. Обратно пропорциональна смещению.

D. Пропорциональна квадрату смещения.

E. Не зависит от смещения.

6. Уравнение свободных гармонических незатухающих колебаний имеет вид:

7. Уравнение вынужденных колебаний имеет вид:

8. Уравнение свободных затухающих колебаний имеет вид:

9.Верным(и) является(ются) следующее из следующих выражений:

А. Коэффициент затухания гармонических затухающих колебаний не зависит от не от кинематической, не от динамической вязкости среды, в которой происходят такие колебания.

В. Собственная частота колебаний равна частоте затухающих колебаний.

С. Амплитуда затухающих колебаний является функцией зависимости от времени (А(t)).

D. Затухание нарушает периодичность колебаний, поэтому затухающие колебания не являются периодичными.

10. Если массу груза 2 кг, подвешенного на пружине и совершающего гармонические колебания с периодом Т, увеличить на 6 кг, то период колебаний станет равным…

11. Скорость прохождения положения равновесия грузом массы m, колеблющегося на пружине жесткостью k с амплитудой колебаний А, равна…

12. Математический маятник совершил 100 колебаний за 314 С. Длина маятника равна…

13. Выражение, определяющее полную энергию E гармонического колебания материальной точки имеет вид…

Какие из следующих величин в процессе гармонических колебаний остаются неизменными: 1) скорость; 2) частота; 3) фаза; 4) период; 5) потенциальная энергия; 6) полная энергия.



D. изменяются все величины

Укажите все верные утверждения.1) Механические колебания могут быть свободными и вынужденными.2) Свободные колебания могут происходить только в колебательной системе.3) Свободные колебания могут происходить не только в колебательной системе. 4) Вынужденные колебания могут происходить только в колебательной системе.5) Вынужденные колебания могут происходить не только в колебательной системе.6) Вынужденные колебания могут происходить не могут происходить в колебательной системе.

А. Все утверждения верны

В. 3, 6, 8 и 7

Е.Все утверждения не верны

Что называется амплитудой колебаний?

A. Смещение.

В. Отклонение тел А.

С. Движение тел А.

D. Наибольшее отклонение тела от положения равновесия.

Какой буквой обозначают частоту?

Какова скорость тела при прохождении положения равновесия?

A. Равна нулю.

С. Минимальн А.

D. Максимальн А.

Каким свойством обладает колебательное движение?

A. Сохраняться.

В. Изменяться.

С. Повторяться.

D. Замедляться.

E. Среди ответов А - D нет правильного

Что такое период колебаний?

A. Время одного полного колебания.

В. Время колебаний до полной остановки тел А.

С. Время, затраченное на то, чтобы отклонить тело от положения равновесия.

D. Среди ответов А - D нет правильного

Какой буквой обозначают период колебаний?

Какова скорость тела при прохождении точки максимального отклонения?

A. Равна нулю.

В. Одинакова при любых положениях тел А.

С. Минимальн А.

D. Максимальн А.



E. Среди ответов А - Е нет правильного

Каково значение ускорения в точке положения равновесия?

A. Максимально.

В. Минимально.

С. Одинаково при любых положениях тел А.

D. Равно нулю.

E. Среди ответов А - Е нет правильного

Колебательная система - это

А. физическая система, в которой при отклонении от положения равновесия существуют колебания

В. физическая система, в которой при отклонении от положения равновесия возникают колебания

С. физическая система, в которой при отклонении от положения равновесия возникают и существуют колебания

D. физическая система, в которой при отклонении от положения равновесия не возникают и не существуют колебания

Маятник – это

А. тело, подвешенное на нити или пружине

В. твердое тело, совершающее под действием приложенных сил колебания

С. Среди ответов нет правильного

D. твердое тело, совершающее под действием приложенных сил колебания около неподвижной точки или вокруг оси.

Выберите верный ответ(ы) на следующий вопрос: От чего зависит частота колебаний пружинного маятника? 1) от его массы;2) от ускорения свободного падения;3) от жесткости пружины;4) от амплитуды колебаний?

Укажите, какие из перечисленных ниже волн являются продольными:1) звуковые волны в газах;2) ультразвуковые волны в жидкостях;3) волны на поверхности воды;4)радиоволны;5) световые волны в прозрачных кристаллах

От каких из перечисленных ниже параметров зависит период колебаний математического маятника: 1) массы маятника; 2) длины нити; 3) ускорения свободного падения в месте нахождения маятника; 4) амплитуды колебаний?

Источником звука является

А. любое колеблющееся тело

В. тела, колеблющиеся с частотой более 20 000 Гц

С. тела, колеблющиеся с частотой от 20 Гц до 20000 Гц

D. тела, колеблющиеся с частотой ниже 20 Гц

49. Громкость звука определяется…

А. амплитудой колебаний источника звука

В. частотой колебаний источника звука

С. периодом колебаний источника звука

D. скоростью движения источника звука

Какой волной является звук?

А. продольной

В. поперечной

С. имеет продольно-поперечный характер

53. Для нахождения скорости звука нужно…

А. длину волны разделить на частоту колебаний источника звука

В. длину волны разделить на период колебаний источника звука

С. длину волны умножить на период колебаний источника звука

D. период колебаний разделить на длину волны

Что такое гидромеханика?

A. наука о движении жидкости;

В. наука о равновесии жидкостей;

С. наука о взаимодействии жидкостей;

D. наука о равновесии и движении жидкостей.

Что такое жидкость?

A. физическое вещество, способное заполнять пустоты;

В. физическое вещество, способное изменять форму под действием сили сохранять свой объем;

С. физическое вещество, способное изменять свой объем;

D. физическое вещество, способное течь.

Давление определяется

А. отношением силы, действующей на жидкость к площади воздействия;

В. произведением силы, действующей на жидкость на площадь воздействия;

С. отношением площади воздействия к значению силы, действующей на жидкость;

D. отношением разности действующих усилий к площади воздействия.

Укажите верные высказывания

А. Увеличение скорости течения вязкой жидкости вследствие неоднородности давления по поперечному сечению трубы создает завихрение и движение новится турбулентным.

В. При турбулентном течении жидкости число Рейнольдса меньше критического.

С. Характер течения жидкости по трубе не зависит от скорости ее течения.

D. Кровь является ньютоновской жидкостью.

Укажите верные высказывания

А. При ламинарном течении жидкости число Рейнольдса меньше критического.

В. Вязкость ньютоновских жидкостей не зависит от градиента скорости.

С. Капиллярный метод определения вязкости основан на законе Стокса.

D. При повышении температуры жидкости ее вязкость не изменяется.

Укажите верные высказывания

А. При определении вязкости жидкости методом Стокса движение шарика в жидкости должно быть равноускоренным.

В. Число Рейнольдса является критерием подобия: при моделировании кровеносной системы:соответствие модели и натуры наблюдается тогда, когда число Рейнольдса для них одинаково.

С. Гидравлическое сопротивление тем больше, чем меньше вязкость жидкости, длина трубы и больше площадь ее поперечного сечения.

D. Если число Рейнольдса меньше критического, то движение жидкости турбулентное, если больше, то ламинарное.

Укажите верные высказывания

А. Закон Стокса получен в предположении, что стенки сосуда не влияют на движение шарика в жидкости.

В. При нагревании вязкость жидкости уменьшается.

С. При течении реальной жидкости отдельные слои ее воздействуют друг на друга с силами,перпендикулярными слоям.

D. При заданных внешних условиях через горизонтальную трубу постоянного сечения протекает тем больше жидкости, чем больше ее вязкость.

02. Электродинамика

1. Силовыми линиями электрического поля называются:

1. геометрическое место точек с одинаковой напряжённостью

2. линии, в каждой точке которых касательные совпадают с направлением вектора напряжённости

3. линии, соединяющие точки с одинаковой напряжённостью

3. Электростатическим полем называется:

1. электрическое поле неподвижных зарядов

2. особый вид материи, посредством которого взаимодействуют все тела, обладающие массой

3. особый вид материи, посредством которого взаимодействуют все элементарные частицы

1. энергетической характеристикой поля, величиной векторной

2. энергетической характеристикой поля, величиной скалярной

3. силовой характеристикой поля, величиной скалярной

4. силовой характеристикой поля, величиной векторной

7. В каждой точке электрического поля, созданного несколькими источниками, напряжённость равна:

1. алгебраической разности напряжённостей полей каждого из источников

2. алгебраической сумме напряжённостей полей каждого из источников

3. геометрической сумме напряжённостей полей каждого из источников

4. скалярной сумме напряжённостей полей каждого из источников

8. В каждой точке электрического поля, созданного несколькими источниками, потенциал электрического поля равен:

1. алгебраической разности потенциалов полей каждого из источников

2. геометрической сумме потенциалов полей каждого из источников

3. алгебраической сумме потенциалов полей каждого из источников

10. Единицей измерения дипольного момента токового диполя в системе СИ является:

13. Работа электрического поля по перемещению заряженного тела из точки 1 в точку 2 равна:

1. произведению массы на напряжённость

2. произведению заряда на разность потенциалов в точках 1 и 2

3. произведению заряда на напряжённость

4. произведению массы на разность потенциалов в точках 1 и 2

15. Система из двух точечных электродов, находящихся в слабопроводящей среде при постоянной разности потенциалов между ними, называется:

1. электрическим диполем

2. токовым диполем

3. электролитической ванной

16. Источником электростатического поля являются (указать неверное):

1. одиночные заряды

2. системы зарядов

3. электрический ток

4. заряженные тела

17. Магнитным полем называется:

1. одна из составляющих электромагнитного поля, посредством которой взаимодействуют неподвижные электрические заряды

2. особый вид материи, посредством которого взаимодействуют тела, обладающие массой

3. одна из составляющих электромагнитного поля, посредством которой взаимодействуют движущиеся электрические заряды

18. Электромагнитным полем называется:

1. особый вид материи, посредством которого взаимодействуют электрические заряды

2. пространство, в котором действуют силы

3. особый вид материи, посредством которого взаимодействуют тела, обладающие массой

19. Переменным электрическим током называется электрический ток:

1. изменяющийся только по величине

2. изменяющийся и по величине и по направлению

3. величина и направление которого не меняются со временем

20. Сила тока в цепи синусоидального переменного тока совпадает по фазе с напряжением, если цепь состоит:

1. из омического сопротивления

2. из емкостного сопротивления

3. из индуктивного сопротивления

24. Импедансом цепи переменного тока называется:

1. полное сопротивление цепи переменного тока

2. реактивная составляющая цепи переменного тока

3. омическая составляющая цепи переменного тока

27. Носителями тока в металлах являются:

1. электроны

4. электроны и дырки

28. Носителями тока в электролитах являются:

1. электроны

4. электроны и дырки

29. Проводимость биологических тканей является:

1. электронной

2. дырочной

3. ионной

4. электронно-дырочной

31. Раздражающее действие на организм человека оказывает:

1. переменный ток высокой частоты

2. постоянный ток

3. ток низкой частоты

4. все перечисленные виды токов

32. Синусоидальным электрическим током называется электрический ток, в котором по гармоническому закону меняется со временем:

1. амплитудное значение силы тока

2. мгновенное значение силы тока

3. эффективное значение силы тока

34. В электрофизиотерапии применяются:

1. исключительно переменные токи высокой частоты

2. исключительно постоянные токи

3. исключительно импульсные токи

4. все перечисленные виды токов

Импедансом называется. . .

1. зависимость сопротивления цепи от частоты переменного тока;

2. активное сопротивление цепи;

3. реактивное сопротивление цепи;

4. полное сопротивление цепи.

Поток протонов, летящий прямолинейно, попадает в однородное магнитное поле, индукция которого перпендикулярна к направлению полета частиц. По какой из траекторий будет двигаться поток в магнитном поле?

1. По окружности

2. По прямой

3. По параболе

4. По винтовой линии

5. По гиперболе

С помощью катушки, подключенной к гальванометру, и полосового магнита моделируются опыты Фарадея. Как изменяется показание гальванометра, если магнит вносить в катушку сначала медленно, а затем значительно быстрее?

1. показания гальванометра увеличатся

2. изменений не произойдет

3. показания гальванометра уменьшатся

4. стрелка гальванометра отклонится в противоположную сторону

5. все определяется намагниченностью магнита

В цепь переменного тока включены последовательно резистор, конденсатор и катушка. Амплитуда колебаний напряжения на резисторе 3 В, на конденсаторе 5 В, на катушке 1 В. Какова амплитуда колебаний напряжения на трех элементах цепи.

174. Электромагнитная волна излучается... .

3. покоящимся зарядом

4. электрическим током

5. другие причины

Что называют плечом диполя?

1. расстояние между полюсами диполя;

2.расстояние между полюсами, умноженное на величину заряда;

3.кратчайшее расстояние от оси вращения до линии действия силы;

4.расстояние от оси вращения до линии действия силы.

Под действием однородного магнитного поля по окружности вращаются две заряженные частицы с одинаковыми скоростями. Масса второй частицы в 4 раза больше массы первой, заряд второй частицы в два раза превышает заряд первой. Во сколько раз радиус окружности, по которой движется вторая частица, больше радиуса первой частицы?

Что такое поляризатор.

3. устройство, преобразующее естественный свет в поляризованный.

Что такое поляриметрия?

1. превращение естественного света в поляризованный;

4. вращение плоскости колебаний поляризованного света.

Аккомодацией называют. . .

1. приспособление глаза к видению в темноте;

2. приспособление глаза к четкому видению различно удаленных предметов;

3. приспособление глаза к восприятию различных оттенков одного цвета;

4. величину, обратную пороговой яркости.

152. Преломляющие среды глаза:

1) роговица, жидкость передней камеры, хрусталик, стекловидное тело;

2) зрачок, роговица, жидкость передней камеры, хрусталик, стекловидное тело;

3) воздух-роговица, роговица - хрусталик, хрусталик - зрительные клетки.

Что такое волна?

1. любой процесс, более или менее точно повторяющийся через равные промежутки времени;

2. процесс распространения каких-либо колебаний в среде;

3. изменение смещения во времени по закону синуса или косинуса.

Что такое поляризатор.

1. устройство, с помощью которого измеряют концентрацию сахарозы;

2. устройство, вращающее плоскость колебаний светового вектора;

3. устройство, преобразующее естественный свет в поляризованный.

Что такое поляриметрия?

1. превращение естественного света в поляризованный;

2. прибор для определения концентрации раствора вещества;

3. метод определения концентрации оптически-активных веществ;

4. вращение плоскости колебаний поляризованного света.

180. Датчики используются для:

1. измерения электрического сигнала;

2. преобразования медико-биологической информации в электрический сигнал;

3. измерения напряжения;

4. электромагнитного воздействия на объект.

181. электроды используются только для съема электрического сигнала:

182. электроды используются для:

1. первичного усиления электрического сигнала;

2. преобразования измеряемой величины в электрический сигнал;

3. электромагнитного воздействия на объект;

4. съема биопотенциалов.

183. К генераторным датчикам относятся:

1. индуктивные;

2. пьезоэлектрические;

3. индукционные;

4. реостатные.

Установите соответствие правильной последовательности формирования изображения предмета в микроскопе при визуальном рассмотрении на расстоянии наилучшего зрения: 1) Окуляр.2) Предмет.3) Мнимое изображение.4) Действительное изображение.5) Источник света.6) Объектив

190. Укажите правильное высказывание:

1) Лазерное излучение когерентное, и именно поэтому оно широко применяется в медицине.

2) По мере распространения света в среде с инверсной населенностью его интенсивность увеличивается.

3) Лазеры создают большую мощность излучения, так как их излучение монохроматическое.

4) Если возбужденная частица самопроизвольно переходит на нижний уровень, то при этом происходит индуцированное излучение фотона.

1. Только 1, 2 и 3

2. Все - 1,2,3 и 4

3. Только 1 и 2

4. Только 1

5. Только 2

192. Электромагнитная волна излучается... .

1. зарядом, который движется с ускорением

2. равномерно движущимся зарядом

3. покоящимся зарядом

4. электрическим током

5. другие причины

Какие из перечисленных условий приводят к возникновению электромагнитных волн: 1) Изменение во времени магнитного поля. 2) Наличие неподвижных заряженных частиц. 3)Наличие проводников с постоянным током. 4) Наличие электростатического поля. 5) Изменение во времени электрического поля.

Чему равен угол между главными сечениями поляризатора и анализатора, если интенсивность естественного света, прошедшего через поляризатор и анализатор, уменьшилась в 4 раза? Считая коэффициенты прозрачности поляризатора и анализатора равными 1, укажите правильный ответ.

2. 45 град

Известно, что явление вращения плоскости поляризации заключается в повороте плоскости колебаний световой волны на угол при прохождении ею расстояния d в оптически активном веществе. Какая связь между углом поворота и d для твердых оптически активных тел?

Поставить в соответствие виды люминесценции с способами возбуждения: 1. а - ультрафиолетовое излучение; 2. б - пучок электронов; 3. в - электрическое поле; 4. г - катодолюминесценция; 5. д - фотолюминесценция; 6. е - электролюминесценция

Ад бг ве

18. Свойства лазерного излучения: а. широкий спектр; б. монохроматическое излучение; в. высокая направленность пучка; г. сильная расходимость пучка; д. когерентное излучение;

Что такое рекомбинация?

1. взаимодействие ионизирующей частицы с атомом;

2. превращение атома в ион;

3. взаимодействие иона с электронами с образованием ими атома;

4. взаимодействие частицы с античастицей;

5. изменение комбинации атомов в молекуле.

36. Укажите правильные высказывания:

1) Ион - это электрически заряженная частица, образующаяся при потере или присоединении электронов атомами, молекулами, радикалами.

2) Ионы могут иметь положительный или отрицательный заряд, кратный заряду электрона.

3) Свойства иона и атома одинаковы.

4) Ионы могут находиться в свободном состоянии или в составе молекул.

37. Укажите правильные высказывания:

1) Ионизация - образование ионов и свободных электронов из атомов, молекул.

2) Ионизация - превращение атомов, молекул в ионы.

3) Ионизация - преобразование ионов в атомы, молекулы.

4) Энергия ионизации - энергия, получаемая электроном в атоме, достаточная для преодоления энергии связи с ядром и его ухода из атома.

38. Укажите правильные высказывания:

1) Рекомбинация - образование атома из иона и электрона.

2) Рекомбинация - образование двух гамма-квантов из электрона и позитрона.

3) Аннигиляция - взаимодействие иона с электроном с образованием атома.

4) Аннигиляция превращение частиц и античастиц в результате взаимодействия в электромагнитные излучения.

5) Аннигиляция - превращение материи из одной формы в другую, один из видов взаимопревращения частиц.

48. Укажите вид ионизирующего излучения, коэффициент качества которого имеет наибольшее значение:

1. бета-излучение;

2. гамма-излучение;

3. рентгеновское излучение;

4. альфа-излучение;

5. поток нейтронов.

По люминесценции изучали степень окисления плазмы крови пациента. Использовали плазму, содержащую, среди прочих составляющих, продукты окисления липидов крови, способные люминесцировать. За определенный интервал времени смесь, поглотив 100 квантов света с длиной волны 410 нм, высветила 15 квантов излучения с длиной волны 550 нм. Каков квантовый выход люминесценции данной плазмы крови?

Какие из перечисленных свойств относятся к тепловому излучению: 1-электромагнитная природа излучения, 2-излучение может находиться в равновесии с излучающим телом, 3-сплошной спектр частот, 4-дискретный спектр частот.

1. Только 1, 2 и 3

2. Все - 1,2,3 и 4

3. Только 1 и 2

4. Только 1

5. Только 2

По какой формуле вычисляется вероятность противоположного события, если известна вероятность Р(А) события А?

A. Р(Aср) = 1 + Р(А);

B. Р(Aср) = Р(А) · Р(Aср·А);

C. Р(Aср) = 1 - Р(А).

Какая из формул верна?

А. Р(АВС) = Р(А)Р(В/А)Р(ВС);

В. Р(АВС) = Р(А)Р(В)Р(С);

С. Р(АВС) = Р(А/В)Р(В/А)Р(В/С).

43. Вероятность появления хотя бы одного из событий А1, А2, …, Аn , независимых друг от друга, равна

А. 1 – (Р(А1) · Р(А2)Р ·…· Р(Аn));

В. 1 – (Р(А1) · Р(А2/ А1)Р ·…· Р(Аn));

С. 1 – (Р(Aср1) · Р(Aср2)Р ·…· Р(Aсрn)).

В приборе имеются три независимо установленных сигнализатора об аварии. Вероятность того, что в случае аварии сработает первый равна 0.9, второй - 0.7, третий - 0.8. Найдите вероятность того, что при аварии не сработает ни один сигнализатор

62. Николай и Леонид выполняют контрольную работу. Вероятность ошибки при вычислениях у Николая составляет 70%, а у Леонида – 30%. Найдите вероятность того, что Леонид допустит ошибку, а Николай нет.

63. Музыкальная школа проводит набор учащихся. Вероятность быть не зачисленным во время проверки музыкального слуха составляет 40%, а чувство ритма – 10%. Какова вероятность положительного тестирования?

64. Каждый из трех стрелков стреляет в мишень по одному разу, причем вероятность попадания 1 стрелка составляет 80%, второго – 70%, третьего – 60%. Найдите вероятность того, что в мишень попадет только второй стрелок.

65. В корзине лежат фрукты, среди которых 30% бананов и 60% яблок. Какова вероятность того, что выбранный наугад фрукт будет бананом или яблоком?

Участковый врач в течение недели принял 35 пациентов, из которых пяти пациентам был поставлен диагноз – язва желудка. Определите относительную частоту появления на приеме пациента с заболеванием желудка.

76. События А и В противоположные, если Р(А) = 0,4, тогда Р(В) = ...

D. верного ответа нет.

77. Если события А и В несовместимые и Р(А) = 0,2 а Р(В) = 0,05, то Р(А + В) =...

78. Если Р(В/А) = Р(В), то события А и В:

А. достоверные;

В. противоположные;

С. зависимые;

D. верного ответа нет

79. Условная вероятность события А при условии записывается в виде:

Колебания и волны

В уравнении гармонического колебания величина, стоящая под знаком косинуса, называется

А. амплитудой

В. циклической частотой

С. начальной фазой

E. смещением от положения равновесия

Колебаниями называют такие процессы, при которых система с большей или меньшей периодичностью многократно проходит через положение равновесия.

Классификация колебаний:

а) по природе (механические, электромагнитные, колебания концентрации, температуры и т.п.);

б) по форме (простые = гармонические; сложные, являющиеся суммой простых гармонических колебаний);

в) по степени периодичности = периодические (характеристики системы повторяются через строго определенный промежуток времени (период)) и апериодические;

г) по отношению ко времени (незатухающие = с постоянной амплитудой; затухающие = с уменьшающейся амплитудой);

г) по энергетике – свободные (однократное поступление энергии в систему извне = однократное внешнее воздействие); вынужденные (многократное (периодическое) поступление энергии в систему извне = периодическое внешнее воздействие); автоколебания (незатухающие колебания, возникающие за счет имеющейся у системы способности регулировать поступление энергии от постоянного источника).

Условия возникновения колебаний.

а) Наличие колебательной системы (маятник на подвесе, пружинный маятник, колебательный контур и т.п.);

б) Наличие внешнего источника энергии, который способен хотя бы 1 раз вывести систему из положения равновесия;

в) Возникновение в системе квазиупругой возвращающей силы (т.е. силы, пропорциональной смещению);

г) Наличие в системе инерции (инерциального элемента).

В качестве наглядного примера рассмотрим движение математического маятника. Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити
. При отклонении маятника от положения равновесия на некоторый уголα появляется касательная составляющая силы тяжести F =- mg sinα . Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника. Она является возвращающей силой. При небольших углах α (порядка 15-20 о) эта сила пропорциональна смещению маятника, т.е. является квазиупругой, а колебания маятника являются гармоническими.

При отклонении маятника он поднимается на определенную высоту, т.е. ему сообщается определенный запас потенциальной энергии (Е пот = mgh ). При движении маятника к положению равновесия происходит переход потенциальной энергии в кинетическую. В момент, когда маятник проходит положение равновесия, потенциальная энергия равна нулю, а кинетическая энергия максимальна. За счет наличия массы m (масса – физическая величина, определяющая инерционные и гравитационные свойства материи) маятник проходит положение равновесия и отклоняется в противоположном направлении. При отсутствии трения в системе колебания маятника будут продолжаться бесконечно долго.

Уравнение гармонического колебания имеет вид:

x(t) = x m cos (ω 0 t + φ 0 ),

где х – смещение тела от положения равновесия;

x m (А ) – амплитуда колебаний, то есть модуль максимального смещения,

ω 0 – циклическая (или круговая) частотаколебаний,

t – время.

Величина, стоящая под знаком косинуса φ = ω 0 t + φ 0 называется фазой гармонического колебания. Фаза определяет смещение в данный момент времени t . Фазу выражают в угловых единицах (радианах).

При t = 0 φ = φ 0 , поэтому φ 0 называют начальной фазой.

Промежуток времени, через который повторяются определенные состояния колебательной системы, называется периодом колебаний T.

Физическая величина, обратная периоду колебаний, называется частотой колебаний:
. Частота колебаний ν показывает, сколько колебаний совершается за в единицу времени. Единица измерения частоты – герц (Гц) – одноколебание в секунду.

Частота колебаний ν связана с циклической частотой ω и периодом колебаний T соотношениями:
.

То есть круговая частота - это число полных колебаний, совершающихся за 2π единиц времени.

Графически гармонические колебания можно изображать в виде зависимости х отt и методом векторных диаграмм.

Метод векторных диаграмм позволяет наглядно представить все параметры, входящие в уравнение гармонических колебаний. Действительно, если вектор амплитуды А расположен под углом φ к оси х , то его проекция на ось х будет равна: x = Acos(φ ) . Угол φ и есть начальная фаза. Если вектор А привести во вращение с угловой скоростью ω 0 , равной круговой частоте колебаний, то проекция конца вектора будет перемещаться по оси х и принимать значения, лежащие в пределах от -A до +A , причем координата этой проекции будет меняться со временем по закону: x (t ) = А cos 0 t + φ) . Время, за которое вектор амплитуды делает один полный оборот, равно периоду Т гармонических колебаний. Число оборотов вектора в секунду равно частоте колебаний ν .

Колебаниями называются движения или процессы, которые характеризуются опреде-ленной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электро-магнитные и др. Однако различные колебательные процессы описываются одинаковы-ми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы.

Колебания называются свободными , если они совершаются только под воздействием внутренних сил, действующих между элементами системы, после того как система выведена из положения равновесия внешними силами и предоставлена самой себе. Свободные колебания всегда затухающие колебания , ибо в реальных системах неизбежны потери энергии. В идеализированном случае системы без потерь энергии свободные колебания (продолжающиеся как угодно долго) называются собственными .

Простейшим типом свободных незатухающих колебаний являются гармонические колебания - колебания, при которых колеб-лющаяся величина изменяется со временем по закону синуса (косинуса). Колебания, встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому.

Гармонические колеба-ния описываются уравнением, которое называется уравнением гармонических колебаний:

где А - амплитуда колебаний, максимальное значение колеблющейся величины х ; - круговая (циклическая) частота собственных колебаний; - начальная фаза колебания в мо-мент времени t = 0; - фаза колебания в момент времени t. Фаза колебания определяет значение колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от +1 до -1, то х может принимать значения от +A до -А .

Время T , за которое система совершает одно полное колебание, называется периодом колебаний . За время Т фаза колебания получает приращение 2π , т. е.

Откуда . (14.2)

Величина , обратная периоду колебаний

т. е. число полных колебаний, совершаемых в единицу времени, называется частотой колебаний. Сравнивая (14.2) и (14.3) получим

Единица частоты - герц (Гц): 1 Гц - частота, при кото-рой за 1с совершается одно полное колебание.

Системы, в которых могут происходить свободные колебания, называются осцилляторами . Какими же свойствами должна обладать система, чтобы в ней могли возникнуть свободные колебания? Механическая система должна иметь положение устойчивого равновесия , при выходе из которого появляется возвращающая сила, направленная к положению равновесия . Этому положению соответствуют, как известно, минимум потенциальной энергии системы. Рассмотрим несколько колебательных систем, удовлетворяющих перечисленным свойствам.

Выбор начальной фазы позволяет при описании гармонических колебаний перейти от функции синуса к функции косинуса:

Обобщенное гармоническое колебание в дифференциальном виде:

Для того чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:

где – масса колеблющегося тела.

Физическую систему, в которой могут существовать гармонические колебания, называют гармоническим осциллятором, а уравнение гармонических колебаний – уравнением гармонического осциллятора.

1.2. Сложение колебаний

Неpедки случаи, когда система одновpеменно участвует в двух или нескольких независимых дpуг от дpуга колебаниях. В этих случаях обpазуется сложное колебательное движение, котоpое создается путем наложения (сложения) колебаний дpуг на дpуга. Очевидно, случаи сложения колебаний могут быть весьма pазнообpазны. Они зависят не только от числа складываемых колебаний, но и от паpаметpов колебаний, от их частот, фаз, амплитуд, напpавлений. Не пpедставляется возможным обозpеть все возможное pазнообpазие случаев сложения колебаний, поэтому огpаничимся pассмотpением лишь отдельных пpимеpов.

Сложение гармонических колебаний, направленных вдоль одной прямой

Рассмотрим сложение одинаково направленных колебаний одного периода, но отличающихся начальной фазой и амплитудой. Уравнения складываемых колебаний заданы в следующем виде:

где и – смещения; и – амплитуды; и – начальные фазы складываемых колебаний.

Рис.2.

Амплитуду результирующего колебания удобно определить с помощью векторной диаграммы (рис. 2), на которой отложены векторы амплитуд и складываемых колебаний под углами и к оси и по правилу параллелограмма получен вектор амплитуды суммарного колебания .

Если равномерно вращать систему векторов (параллелограмм) и проектировать векторы на ось , то их проекции будут совершать гармонические колебания в соответствии с заданными уравнениями. Взаимное расположение векторов , и при этом остается неизменным, поэтому колебательное движение проекции результирующего вектора тоже будет гармоническим.

Отсюда следует вывод, что суммарное движение - гармоническое колебание, имеющее заданную циклическую частоту. Определим модуль амплитуды А результирующего колебания. В угол (из равенства противоположных углов параллелограмма).

Следовательно,

отсюда: .

Согласно теореме косинусов ,

Начальная фаза результирующего колебания определяется из :

Соотношения для фазы и амплитуды позволяют найти амплитуду и начальную фазу результирующего движения и составить его уравнение: .

Биения

Рассмотрим случай, когда частоты двух складываемых колебаний мало отличаются друг от друга , и пусть амплитуды одинаковы и начальные фазы , т.е.

Сложим эти уравнения аналитически:

Преобразуем

Рис. 3.
Так как, медленно изменяется, величину нельзя назвать амплитудой в полном смысле этого слова (амплитуда величина постоянная). Условно эту величину можно назвать переменной амплитудой. График таких колебаний показан на рис.3. Складываемые колебания имеют одинаковые амплитуды, но различны периоды, при этом периоды и отличаются незначительно друг от друга. При сложении таких колебаний наблюдаются биения. Число биений в секунду определяется разностью частот складываемых колебаний, т.е

Биения можно наблюдать при звучании двух камертонов, если частоты и колебаний близки друг к другу.

Сложение взаимно перпендикулярных колебаний

Пусть материальная точка одновременно участвует в двух гармонических колебаниях, совершающихся с одинаковыми периодами в двух взаимно перпендикулярных направлениях. С этими направлениями можно связать прямоугольную систему координат , расположив начало координат в положении равновесия точки. Обозначим смещение точки С вдоль осей и , соответственно, через и . (рис. 4).

Рассмотрим несколько частных случаев.

1). Начальные фазы колебаний одинаковы

Выберем момент начала отсчета времени таким образом, чтобы начальные фазы обоих колебаний были равны нулю. Тогда смещения вдоль осей и можно выразить уравнениями:

Поделив почленно эти равенства, получим уравнения траектории точки С:
или .

Следовательно, в результате сложения двух взаимно перпендикулярных колебаний точка С колеблется вдоль отрезка прямой, проходящей через начало координат (рис.4).

Рис. 4.
2). Начальная разность фаз равна :

Уравнения колебания в этом случае имеют вид:

Уравнение траектории точки:

Следовательно, точка С колеблется вдоль отрезка прямой, проходящей через начало координат, но лежащей в других квадрантах, чем в первом случае. Амплитуда А результирующих колебаний в обоих рассмотренных случаях равна:

3). Начальная разность фаз равна .

Уравнения колебаний имеют вид:

Разделим первое уравнение на , второе – на :

Возведем оба равенства в квадрат и сложим. Получим следующее уравнение траектории результирующего движения колеблющейся точки:

Колеблющаяся точка С движется по эллипсу с полуосями и . При равных амплитудах траекторией суммарного движения будет окружность . В общем случае при , но кратным, т.е. , при сложении, взаимно перпендикулярных колебаний колеблющаяся точка движется по кривым, называемым фигурами Лиссажу.

Фигуры Лиссажу

Фигу́ры Лиссажу́ – замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях.

Впервые изучены французским учёным Жюлем Антуаном Лиссажу. Вид фигур зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний (рис. 5).

Рис.5.

В простейшем случае равенства обоих периодов фигуры представляют собой эллипсы, которые при разности фаз или вырождаются в отрезки прямых, а при разности фаз и равенстве амплитуд превращаются в окружность. Если периоды обоих колебаний неточно совпадают, то разность фаз всё время меняется, вследствие чего эллипс всё время деформируется. При существенно различных периодах фигуры Лиссажу не наблюдаются. Однако, если периоды относятся как целые числа, то через промежуток времени, равный наименьшему кратному обоих периодов, движущаяся точка снова возвращается в то же положение – получаются фигуры Лиссажу более сложной формы.
Фигуры Лиссажу вписываются в прямоугольник, центр которого совпадает с началом координат, а стороны параллельны осям координат и расположены по обе стороны от них на расстояниях, равных амплитудам колебаний (рис. 6).

Меняется во времени по синусоидальному закону:

где х — значение колеблющейся величины в момент времени t , А — амплитуда , ω — круговая частота, φ — начальная фаза колебаний, (φt + φ ) — полная фаза колебаний . При этом величины А , ω и φ — постоянные.

Для механических колебаний колеблющейся величиной х являются, в частности, смещение и скорость , для электрических колебаний — напряжение и сила тока .

Гармонические колебания занимают особое место среди всех видов колебаний, т. к. это единственный тип колебаний, форма которых не искажается при прохождении через любую однородную среду, т. е. волны, распространяющиеся от источника гармонических колебаний, также будут гармоническими. Любое негармоническое колебание может быть представлено в виде сумм (интеграла) различных гармонических колебаний (в виде спектра гармонических колебаний).

Превращения энергии при гармонических колебаниях.

В процессе колебаний происходит переход потенциальной энергии W p в кинетическую W k и наоборот. В положении максимального отклонения от положения равновесия потенциальная энергия максимальна, кинетическая равна нулю. По мере возвращения к положению равновесия скорость колеблющегося тела растет, а вместе с ней растет и кинетическая энергия, достигая максимума в положении равновесия. Потенциальная энергия при этом падает до нуля. Дальней-шее движение происходит с уменьшением скорости, которая падает до нуля, когда отклонение достигает своего второго максимума. Потенциальная энергия здесь увеличивается до своего перво-начального (максимального) значения (при отсутствии трения). Таким образом, колебания кинетической и потенциальной энергий происходят с удвоенной (по сравнению с колебаниями самого маятника) частотой и находятся в противофазе (т. е. между ними существует сдвиг фаз, равный π ). Полная энергия колебаний W остается неизменной. Для тела, колеблющегося под действием силы упругости , она равна:

где v m — максимальная скорость тела (в положении равновесия), х m = А — амплитуда.

Из-за наличия трения и сопротивления среды свободные колебания затухают: их энергия и амплитуда с течением времени уменьшаются. Поэтому на практике чаще используют не свободные, а вынужденные колебания.